Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1211460, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37361221

RESUMO

Background: Microvascular endothelial hyperpermeability is an earliest pathological hallmark in Acute Lung Injury (ALI), which progressively leads to Acute Respiratory Distress Syndrome (ARDS). Recently, vascular protective and anti-inflammatory effect of metformin, irrespective of glycemic control, has garnered significant interest. However, the underlying molecular mechanism(s) of metformin's barrier protective benefits in lung-endothelial cells (ECs) has not been clearly elucidated. Many vascular permeability-increasing agents weakened adherens junctions (AJ) integrity by inducing the reorganization of the actin cytoskeleton and stress fibers formation. Here, we hypothesized that metformin abrogated endothelial hyperpermeability and strengthen AJ integrity via inhibiting stress fibers formation through cofilin-1-PP2AC pathway. Methods: We pretreated human lung microvascular ECs (human-lung-ECs) with metformin and then challenged with thrombin. To investigate the vascular protective effects of metformin, we studied changes in ECs barrier function using electric cell-substrate impedance sensing, levels of actin stress fibers formation and inflammatory cytokines IL-1ß and IL-6 expression. To explore the downstream mechanism, we studied the Ser3-phosphorylation-cofilin-1 levels in scramble and PP2AC-siRNA depleted ECs in response to thrombin with and without metformin pretreatment. Results: In-vitro analyses showed that metformin pretreatment attenuated thrombin-induced hyperpermeability, stress fibers formation, and the levels of inflammatory cytokines IL-6 and IL-ß in human-lung-ECs. We found that metformin mitigated Ser3-phosphorylation mediated inhibition of cofilin-1 in response to thrombin. Furthermore, genetic deletion of PP2AC subunit significantly inhibited metformin efficacy to mitigate thrombin-induced Ser3-phosphorylation cofilin-1, AJ disruption and stress fibers formation. We further demonstrated that metformin increases PP2AC activity by upregulating PP2AC-Leu309 methylation in human-lung-ECs. We also found that the ectopic expression of PP2AC dampened thrombin-induced Ser3-phosphorylation-mediated inhibition of cofilin-1, stress fibers formation and endothelial hyperpermeability. Conclusion: Together, these data reveal the unprecedented endothelial cofilin-1/PP2AC signaling axis downstream of metformin in protecting against lung vascular endothelial injury and inflammation. Therefore, pharmacologically enhancing endothelial PP2AC activity may lead to the development of novel therapeutic approaches for prevention of deleterious effects of ALI on vascular ECs.

2.
Front Med (Lausanne) ; 9: 897188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059820

RESUMO

Diabetic glomerular injury is a major complication of diabetes mellitus and is the leading cause of end stage renal disease (ESRD). Healthy podocytes are essential for glomerular function and health. Injury or loss of these cells results in increased proteinuria and kidney dysfunction and is a common finding in various glomerulopathies. Thus, mechanistic understanding of pathways that protect podocytes from damage are essential for development of future therapeutics. MicroRNA-146a (miR-146a) is a negative regulator of inflammation and is highly expressed in myeloid cells and podocytes. We previously reported that miR-146a levels are significantly reduced in the glomeruli of patients with diabetic nephropathy (DN). Here we report generation of mice with selective deletion of miR-146a in podocytes and use of these mice in models of glomerular injury. Induction of glomerular injury in C57BL/6 wildtype mice (WT) and podocyte-specific miR-146a knockout (Pod-miR146a-/-) animals via administration of low-dose lipopolysaccharide (LPS) or nephrotoxic serum (NTS) resulted in increased proteinuria in the knockout mice, suggesting that podocyte-expressed miR-146a protects these cells, and thus glomeruli, from damage. Furthermore, induction of hyperglycemia using streptozotocin (STZ) also resulted in an accelerated development of glomerulopathy and a rapid increase in proteinuria in the knockout animals, as compared to the WT animals, further confirming the protective role of podocyte-expressed miR-146a. We also confirmed that the direct miR-146a target, ErbB4, was significantly upregulated in the diseased glomeruli and erlotinib, an ErbB4 and EGFR inhibitor, reducedits upregulation and the proteinuria in treated animals. Primary miR146-/- podocytes from these animals also showed a basally upregulated TGFß-Smad3 signaling in vitro. Taken together, this study shows that podocyte-specific miR-146a is imperative for protecting podocytes from glomerular damage, via modulation of ErbB4/EGFR, TGFß, and linked downstream signaling.

3.
Transl Res ; 245: 41-54, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35288363

RESUMO

Lupus nephritis (LN) develops in more than a third of all systemic lupus erythematosus (SLE) patients and is the strongest predictor of morbidity and mortality. Increased circulating levels of type I interferon (IFN I) and anti-double stranded DNA (anti-dsDNA) and anti-RNA binding protein (anti-RNP) antibodies lead to increased glomerular injury via leukocyte activation and glomerular infiltration. Uncontrolled Toll-like receptor (TLR) signaling in leukocytes results in increased production of IFN I and anti-dsDNA antibodies. ITGAM gene codes for integrin CD11b, the α-chain of integrin heterodimer CD11b/CD18, that is highly expressed in leukocytes and modulates TLR-dependent pro-inflammatory signaling. Three nonsynonymous SNPs in the ITGAM gene strongly correlate with increased risk for SLE and LN and with IFN I levels. Here we review the literature on the role of CD11b on leukocytes in LN. We also incorporate conclusions from several recent studies that show that these ITGAM SNPs result in a CD11b protein that is less able to suppress TLR-dependent pro-inflammatory pathways in leukocytes, that activation of CD11b via novel small molecule agonists suppresses TLR-dependent pathways, including reductions in circulating levels of IFN I and anti-dsDNA antibodies, and that CD11b activation reduces LN in model systems. Recent data strongly suggest that integrin CD11b is an exciting new therapeutic target in SLE and LN and that allosteric activation of CD11b is a novel therapeutic paradigm for effectively treating such autoimmune diseases.


Assuntos
Interferon Tipo I , Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Anticorpos Antinucleares , Humanos , Nefrite Lúpica/tratamento farmacológico , Receptores Toll-Like
4.
Cells ; 10(4)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807406

RESUMO

Dilated cardiomyopathy (DCM) is characterized by pathologic cardiac remodeling resulting in chambers enlargement and impaired heart contractility. Previous reports and our in-silico analysis support the association of DCM phenotype and impaired tissue angiogenesis. Here, we explored whether the modulation in cardiac angiogenesis partly intervenes or rescues the DCM phenotype in mice. Here, a DCM mouse model [α-tropomyosin 54 (α-TM54) mutant] was crossbred with microRNA-210 transgenic mice (210-TG) to develop microRNA-210 (miR-210) overexpressing α-TM54 mutant mice (TMx210). Contrary to wild-type (WT) and 210-TG mice, a significant increase in heart weight to body weight ratio in aged mixed-gender TMx210 and DCM mice was recorded. Histopathological analysis revealed signs of pathological cardiac remodeling such as myocardial disarray, myofibrillar loss, and interstitial fibrosis in DCM and TMx210 mice. Contrary to WT and DCM, a significant increase in angiogenic potential was observed in TMx210 and 210-TG mice hearts which is reflected by higher blood vessel density and upregulated proangiogenic vascular endothelial growth factor-A. The echocardiographic assessment showed comparable cardiac dysfunction in DCM and TMx210 mice as compared to WT and 210-TG. Overall, the present study concludes that miR-210 mediated upregulated angiogenesis is not sufficient to rescue the DCM phenotype in mice.


Assuntos
Cardiomiopatia Dilatada/fisiopatologia , Neovascularização Fisiológica , Regulação para Cima , Animais , Cardiomiopatia Dilatada/genética , Modelos Animais de Doenças , Coração/fisiopatologia , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Mutação/genética , Neovascularização Fisiológica/genética , Fenótipo , Transdução de Sinais , Tropomiosina/genética
5.
J Immunol ; 205(9): 2545-2553, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32938725

RESUMO

Pharmacological activation of integrin CD11b/CD18 (αMß2, Mac-1, and CR3) shows anti-inflammatory benefits in a variety of animal models of human disease, and it is a novel therapeutic strategy. Reasoning that genetic models can provide an orthogonal and direct system for the mechanistic study of CD11b agonism, we present in this study, to our knowledge, a novel knock-in model of constitutive active CD11b in mice. We genetically targeted the Itgam gene (which codes for CD11b) to introduce a point mutation that results in the I332G substitution in the protein. The I332G mutation in CD11b promotes an active, higher-affinity conformation of the ligand-binding I/A-domain (CD11b αA-domain). In vitro, this mutation increased adhesion of knock-in neutrophils to fibrinogen and decreased neutrophil chemotaxis to a formyl-Met-Leu-Phe gradient. In vivo, CD11bI332G animals showed a reduction in recruitment of neutrophils and macrophages in a model of sterile peritonitis. This genetic activation of CD11b also protected against development of atherosclerosis in the setting of hyperlipidemia via reduction of macrophage recruitment into atherosclerotic lesions. Thus, our animal model of constitutive genetic activation of CD11b can be a useful tool for the study of integrin activation and its potential contribution to modulating leukocyte recruitment and alleviating different inflammatory diseases.


Assuntos
Antígeno CD11b/genética , Antígenos CD18/genética , Integrinas/genética , Animais , Adesão Celular/genética , Quimiotaxia de Leucócito/genética , Modelos Animais de Doenças , Feminino , Fibrinogênio/genética , Leucócitos/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Genéticos , N-Formilmetionina Leucil-Fenilalanina/análogos & derivados , N-Formilmetionina Leucil-Fenilalanina/metabolismo , Neutrófilos/metabolismo
6.
Int Ophthalmol ; 40(11): 3067-3075, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32613461

RESUMO

OBJECTIVE: To analyze the role of intravitreal anti-vascular endothelial growth factor (anti-VEGF) or steroid injection for the management of Irvine Gass syndrome. METHODS: It is an interventional, retrospective, multicenter study. One hundred and thirty-two injections were given in 79 eyes of 72 patients with Irvine Gass syndrome. Patients were treated with at least one intravitreal injection of either anti-VEGF or steroid. Outcomes were measured at 12 months (± 1 week). [Ranibizumab (Lucentis; Genentech, South San Francisco, CA) (Razumab; Intas Pharmaceutical Ltd, Ahmedabad, India) Bevacizumab (Avastin; Genentech, South San Francisco, CA) or Aflibercept (Eylea; Regeneron, Tarrytown, NY)] or steroids [Dexamethasone implant (Ozurdex, Allergan Inc, Irvine, CA) or intravitreal triamcinolone)]. RESULTS: Intravitreal injections were initiated in (67.6%) of eyes within 14 weeks of diagnosis. Intravitreal dexamethasone implant was used as the initial intravitreal therapy in (73.4%) of eyes. More than fifty percent (54.5%) of the patients were switched from anti-VEGF to Intravitreal dexamethasone implant. Reduction in the mean CMT was 336.7 ± 191.7 and 160.1 ± 153.1 microns in eyes treated within four weeks and more than 14 weeks from diagnosis (p = 0.005). Mean ETDRS letter gain was 16.7 ± 12.9 and 5.2 ± 9.2 in eyes treated within 4 weeks and more than 14 weeks from diagnosis (p = 0.004). Three eyes injected with intravitreal dexamethasone implant reported an intraocular pressure spike of > 25 mmHg which was controlled with topical medications. No other ocular or systemic adverse events were observed. CONCLUSION: Study results suggest that physicians tend to introduce intravitreal therapy within 14 weeks of diagnosis. The most common therapy at initiation and for the switch is intravitreal dexamethasone implant. Patients treated early (within 4 weeks) respond better in terms of structure and function.


Assuntos
Edema Macular , Bevacizumab/uso terapêutico , Dexametasona/uso terapêutico , Implantes de Medicamento , Glucocorticoides/uso terapêutico , Humanos , Índia , Injeções Intravítreas , Edema Macular/tratamento farmacológico , Estudos Retrospectivos , Acuidade Visual
7.
Immunity ; 39(5): 874-84, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24184056

RESUMO

Severe sepsis remains a poorly understood systemic inflammatory condition with high mortality rates and limited therapeutic options in addition to organ support measures. Here we show that the clinically approved group of anthracyclines acts therapeutically at a low dose regimen to confer robust protection against severe sepsis in mice. This salutary effect is strictly dependent on the activation of DNA damage response and autophagy pathways in the lung, as demonstrated by deletion of the ataxia telangiectasia mutated (Atm) or the autophagy-related protein 7 (Atg7) specifically in this organ. The protective effect of anthracyclines occurs irrespectively of pathogen burden, conferring disease tolerance to severe sepsis. These findings demonstrate that DNA damage responses, including the ATM and Fanconi Anemia pathways, are important modulators of immune responses and might be exploited to confer protection to inflammation-driven conditions, including severe sepsis.


Assuntos
Antraciclinas/farmacologia , Antibacterianos/farmacologia , Reparo do DNA/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Peritonite/tratamento farmacológico , Sepse/prevenção & controle , Infecções por Adenoviridae/imunologia , Animais , Antraciclinas/uso terapêutico , Antibacterianos/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Proteína 7 Relacionada à Autofagia , Ceco/lesões , Dano ao DNA , Epirubicina/administração & dosagem , Epirubicina/farmacologia , Epirubicina/uso terapêutico , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/fisiologia , Inflamação , Mediadores da Inflamação/análise , Injeções Intraperitoneais , Pulmão/metabolismo , Meropeném , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/fisiologia , Especificidade de Órgãos , Peritonite/etiologia , Peritonite/genética , Peritonite/imunologia , Peritonite/fisiopatologia , Infecções Respiratórias/imunologia , Choque Séptico/prevenção & controle , Tienamicinas/uso terapêutico , Irradiação Corporal Total
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA