RESUMO
Ten-week-old Zucker diabetic fatty (ZDF) rats at an early stage of diabetes embody metabolic characteristics of obese human patients with type 2 diabetes, such as severe insulin and glucose intolerance in muscle and the liver, excessive postprandial excursion of plasma glucose and insulin, and a loss of metabolic flexibility with decreased lipid oxidation. Metabolic flexibility and glucose flux were examined in ZDF rats during fasting and near-normal postprandial insulinemia and glycemia after correcting excessive postprandial hyperglycemia using treatment with a sodium-glucose cotransporter 2 inhibitor (SGLT2-I) for 7 days. Preprandial lipid oxidation was normalized, and with fasting, endogenous glucose production (EGP) increased by 30% and endogenous glucose disposal (E-Rd) decreased by 40%. During a postprandial hyperglycemic-hyperinsulinemic clamp after SGLT2-I treatment, E-Rd increased by normalizing glucose effectiveness to suppress EGP and stimulate hepatic glucose uptake; activation of glucokinase was restored and insulin action was improved, stimulating muscle glucose uptake in association with decreased intracellular triglyceride content. In conclusion, SGLT2-I treatment improves impaired glucose effectiveness in the liver and insulin sensitivity in muscle by eliminating glucotoxicity, which reinstates metabolic flexibility with restored preprandial lipid oxidation and postprandial glucose flux in ZDF rats.
Assuntos
Glicemia/efeitos dos fármacos , Canagliflozina/farmacologia , Intolerância à Glucose/metabolismo , Hiperglicemia/metabolismo , Resistência à Insulina , Fígado/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Animais , Glicemia/metabolismo , Glucoquinase/efeitos dos fármacos , Glucoquinase/metabolismo , Glucose/metabolismo , Técnica Clamp de Glucose , Hipoglicemiantes , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Músculo Esquelético/metabolismo , Oxirredução , Período Pós-Prandial/efeitos dos fármacos , Ratos , Ratos Zucker , Inibidores do Transportador 2 de Sódio-GlicoseRESUMO
A duplexed, functional multiaddition high throughput screen and subsequent optimization effort identified the first orally bioavailable and CNS penetrant glucagon-like peptide-1 receptor (GLP-1R) noncompetitive antagonist. Antagonist 5d not only blocked exendin-4-stimulated insulin release in islets but also lowered insulin levels while increasing blood glucose in vivo.
Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/antagonistas & inibidores , Pirimidinas/química , Pirimidinas/farmacologia , Administração Oral , Animais , Glicemia/análise , Glicemia/metabolismo , Células Cultivadas , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Halogenação , Humanos , Insulina/sangue , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Pirimidinas/administração & dosagem , Pirimidinas/farmacocinética , Ratos Sprague-DawleyRESUMO
To understand the underlying pathology of metabolic diseases, such as diabetes, an accurate determination of whole body glucose flux needs to be made by a method that maintains key physiological features. One such feature is a positive differential in insulin concentration between the portal venous and systemic arterial circulation (P/S-IG). P/S-IG during the determination of the relative contribution of liver and extra-liver tissues/organs to whole body glucose flux during an insulin clamp with either systemic (SID) or portal (PID) insulin delivery was examined with insulin infusion rates of 1, 2, and 5 mU·kg(-1)·min(-1) under either euglycemic or hyperglycemic conditions in 6-h-fasted conscious normal rats. A P/S-IG was initially determined with endogenous insulin secretion to exist with a value of 2.07. During an insulin clamp, while inhibiting endogenous insulin secretion by somatostatin, P/S-IG remained at 2.2 with PID, whereas, P/S-IG disappeared completely with SID, which exhibited higher arterial and lower portal insulin levels compared with PID. Consequently, glucose disappearance rates and muscle glycogen synthetic rates were higher, but suppression of endogenous glucose production and liver glycogen synthetic rates were lower with SID compared with PID. When the insulin clamp was performed with SID at 2 and 5 mU·kg(-1)·min(-1) without managing endogenous insulin secretion under euglycemic but not hyperglycemic conditions, endogenous insulin secretion was completely suppressed with SID, and the P/S-IG disappeared. Thus, compared with PID, an insulin clamp with SID underestimates the contribution of liver in response to insulin to whole body glucose flux.
Assuntos
Glicemia/metabolismo , Técnica Clamp de Glucose/métodos , Insulina/administração & dosagem , Administração Intravenosa , Animais , Cateterismo Periférico , Glucagon/metabolismo , Hiperglicemia/metabolismo , Insulina/sangue , Masculino , Veia Porta , Ratos , Ratos Sprague-DawleyRESUMO
A loss of glucose effectiveness to suppress hepatic glucose production as well as increase hepatic glucose uptake and storage as glycogen is associated with a defective increase in glucose phosphorylation catalyzed by glucokinase (GK) in Zucker diabetic fatty (ZDF) rats. We extended these observations by investigating the role of persistent hyperglycemia (glucotoxicity) in the development of impaired hepatic GK activity in ZDF rats. We measured expression and localization of GK and GK regulatory protein (GKRP), translocation of GK, and hepatic glucose flux in response to a gastric mixed meal load (MMT) and hyperglycemic hyperinsulinemic clamp after 1 or 6 wk of treatment with the sodium-glucose transporter 2 inhibitor (canaglifrozin) that was used to correct the persistent hyperglycemia of ZDF rats. Defective augmentation of glucose phosphorylation in response to a rise in plasma glucose in ZDF rats was associated with the coresidency of GKRP with GK in the cytoplasm in the midstage of diabetes, which was followed by a decrease in GK protein levels due to impaired posttranscriptional processing in the late stage of diabetes. Correcting hyperglycemia from the middle diabetic stage normalized the rate of glucose phosphorylation by maintaining GK protein levels, restoring normal nuclear residency of GK and GKRP under basal conditions and normalizing translocation of GK from the nucleus to the cytoplasm, with GKRP remaining in the nucleus in response to a rise in plasma glucose. This improved the liver's metabolic ability to respond to hyperglycemic hyperinsulinemia. Glucotoxicity is responsible for loss of glucose effectiveness and is associated with altered GK regulation in the ZDF rat.
Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Glucoquinase/metabolismo , Glucose/toxicidade , Fígado/enzimologia , Obesidade/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Canagliflozina , Diabetes Mellitus Tipo 2/complicações , Ingestão de Alimentos/efeitos dos fármacos , Glucagon/metabolismo , Glucose/biossíntese , Técnica Clamp de Glucose , Glucosídeos/farmacologia , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Hiperinsulinismo/metabolismo , Imuno-Histoquímica , Fígado/metabolismo , Masculino , Obesidade/complicações , Tamanho do Órgão/efeitos dos fármacos , Consumo de Oxigênio , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Zucker , Transportador 2 de Glucose-Sódio , Inibidores do Transportador 2 de Sódio-Glicose , Tiofenos/farmacologiaRESUMO
The impact of the GLP-1 receptor agonist lixisenatide on postprandial glucose disposition was examined in conscious dogs to identify mechanisms for its improvement of meal tolerance in humans and examine the tissue disposition of meal-derived carbohydrate. Catheterization for measurement of hepatic balance occurred ≈16 days before study. After being fasted overnight, dogs received a subcutaneous injection of 1.5 µg/kg lixisenatide or vehicle (saline, control; n = 6/group). Thirty minutes later, they received an oral meal feeding (93.4 kJ; 19% protein, 71% glucose polymers, and 10% lipid). Acetaminophen was included in the meal in four control and five lixisenatide dogs for assessment of gastric emptying. Observations continued for 510 min; absorption was incomplete in lixisenatide at that point. The plasma acetaminophen area under the curve (AUC) in lixisenatide was 65% of that in control (P < 0.05). Absorption of the meal began within 15 min in control but was delayed until ≈30-45 min in lixisenatide. Lixisenatide reduced (P < 0.05) the postprandial arterial glucose AUC ≈54% and insulin AUC ≈44%. Net hepatic glucose uptake did not differ significantly between groups. Nonhepatic glucose uptake tended to be reduced by lixisenatide (6,151 ± 4,321 and 10,541 ± 1,854 µmol·kg(-1)·510 min(-1) in lixisenatide and control, respectively; P = 0.09), but adjusted (for glucose and insulin concentrations) values did not differ (18.9 ± 3.8 and 19.6 ± 7.9 l·kg(-1)·pmol(-1)·l(-1), lixisenatide and control, respectively; P = 0.94). Thus, lixisenatide delays gastric emptying, allowing more efficient disposal of the carbohydrate in the feeding without increasing liver glucose disposal. Lixisenatide could prove to be a valuable adjunct in treatment of postprandial hyperglycemia in impaired glucose tolerance or type 2 diabetes.
Assuntos
Glucose/metabolismo , Hipoglicemiantes/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Peptídeos/farmacologia , Período Pós-Prandial/efeitos dos fármacos , Acetaminofen/administração & dosagem , Animais , Estado de Consciência , Cães , Feminino , Esvaziamento Gástrico/efeitos dos fármacos , Glucagon/sangue , Receptor do Peptídeo Semelhante ao Glucagon 1 , Insulina/sangue , Masculino , Receptores de Glucagon/agonistasRESUMO
In rodents, acute brain insulin action reduces blood glucose levels by suppressing the expression of enzymes in the hepatic gluconeogenic pathway, thereby reducing gluconeogenesis and endogenous glucose production (EGP). Whether a similar mechanism is functional in large animals, including humans, is unknown. Here, we demonstrated that in canines, physiologic brain hyperinsulinemia brought about by infusion of insulin into the head arteries (during a pancreatic clamp to maintain basal hepatic insulin and glucagon levels) activated hypothalamic Akt, altered STAT3 signaling in the liver, and suppressed hepatic gluconeogenic gene expression without altering EGP or gluconeogenesis. Rather, brain hyperinsulinemia slowly caused a modest reduction in net hepatic glucose output (NHGO) that was attributable to increased net hepatic glucose uptake and glycogen synthesis. This was associated with decreased levels of glycogen synthase kinase 3ß (GSK3ß) protein and mRNA and with decreased glycogen synthase phosphorylation, changes that were blocked by hypothalamic PI3K inhibition. Therefore, we conclude that the canine brain senses physiologic elevations in plasma insulin, and that this in turn regulates genetic events in the liver. In the context of basal insulin and glucagon levels at the liver, this input augments hepatic glucose uptake and glycogen synthesis, reducing NHGO without altering EGP.
Assuntos
Encéfalo/metabolismo , Cães , Gluconeogênese/fisiologia , Glucose/metabolismo , Glicogênio/biossíntese , Insulina/metabolismo , Fígado/metabolismo , Animais , Ácidos Graxos não Esterificados/sangue , Glucagon/sangue , Humanos , Hiperinsulinismo/metabolismoRESUMO
Inactive cortisone is converted to active cortisol within the liver by 11 beta-hydroxysteroid dehydrogenase-1 (11 beta-HSD1), and impaired regulation of this process may be related to increased hepatic glucose production (HGP) in individuals with type 2 diabetes. The primary aim of this study was to investigate the effect of acute 11 beta-HSD1 inhibition on HGP and fat metabolism during insulin deficiency. Sixteen conscious, 42-h-fasted, lean, healthy dogs were studied. Somatostatin was infused to create insulin deficiency, and the animals were treated with a specific 11 beta-HSD1 inhibitor (compound 531) or placebo for 5 h. 11 beta-HSD1 inhibition completely suppressed hepatic cortisol production, and this attenuated the increase in HGP that occurred during insulin deficiency. PEPCK and glucose-6-phosphatase expression were decreased when 11 beta-HSD1 was inhibited, but gluconeogenic flux was unchanged, implying an effect on glycogenolysis. Since inhibition of hepatic cortisol production reduces HGP during insulin deficiency, 11 beta-HSD1 is a potential therapeutic target for the treatment of excess glucose production that occurs in diabetes.