Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39062974

RESUMO

RNA-binding proteins (RBPs), which regulate gene expression through post-transcriptional modifications of RNAs, play a role in diverse biological processes that include bone cell development and bone tissue formation. RBP dysregulation may result in aberrant bone homeostasis and contribute to various bone diseases. The function of RBPs in bone physiology and pathophysiology and the underlying molecular mechanisms have been extensively studied in recent years. This article provides a review of such studies, highlighting the potential of RBPs as pivotal targets for therapeutic intervention.


Assuntos
Desenvolvimento Ósseo , Doenças Ósseas , Proteínas de Ligação a RNA , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Doenças Ósseas/metabolismo , Doenças Ósseas/genética , Animais , Desenvolvimento Ósseo/genética , Osteogênese/genética , Osso e Ossos/metabolismo
2.
Front Chem ; 11: 1126171, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37201130

RESUMO

Besides natural sunlight and expensive artificial lights, economical indoor white light can play a significant role in activating a catalyst for photocatalytic removal of organic toxins from contaminated water. In the current effort, CeO2 has been modified with Ni, Cu, and Fe through doping methodology to study the removal of 2-chlorophenol (2-CP) in the illumination of 70 W indoor LED white light. The absence of additional diffractions due to the dopants and few changes such as reduction in peaks' height, minor peak shift at 2θ (28.525°) and peaks' broadening in XRD patterns of modified CeO2 verifies the successful doping of CeO2. The solid-state absorption spectra revealed higher absorbance of Cu-doped CeO2 whereas a lower absorption response was observed for Ni-doped CeO2. An interesting observation regarding the lowering of indirect bandgap energy of Fe-doped CeO2 (∼2.7 eV) and an increase in Ni-doped CeO2 (∼3.0 eV) in comparison to pristine CeO2 (∼2.9 eV) was noticed. The process of e -- h + recombination in the synthesized photocatalysts was also investigated through photoluminescence spectroscopy. The photocatalytic studies revealed the greater photocatalytic activity of Fe-doped CeO2 with a higher rate (∼3.9 × 10-3 min-1) among all other materials. Moreover, kinetic studies also revealed the validation of the Langmuir-Hinshelwood kinetic model (R2 = 0.9839) while removing 2-CP in the exposure of indoor light with a Fe-doped CeO2 photocatalyst. The XPS analysis revealed the existence of Fe3+, Cu2+ and Ni2+ core levels in doped CeO2. Using the agar well-diffusion method, the antifungal activity was assessed against the fungus M. fructicola and F. oxysporum. Compared to CeO2, Ni-doped CeO2, and Cu-doped CeO2 nanoparticles, the Fe-doped CeO2 nanoparticles have outstanding antifungal properties.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36280225

RESUMO

Hibernating Spermophilus dauricus is resistant to muscle atrophy. Comprehensive transcriptome and proteome time-course analyses based on Metascape can further reveal the underlying processes (pre-hibernation stage, PRE; torpor stage, TOR; interbout arousal stage, IBA; and post-hibernation stage, POST). Transcriptome analysis showed that the cellular responses to growth factor stimulus and discrete oxygen levels continuously changed during hibernation. Proteomic analysis showed that neutrophil degranulation, sulfur compound metabolic process, and generation of precursor metabolites and energy continuously changed during hibernation. Molecular complex detection (MCODE) analysis in both transcriptome and proteome indicated that smooth muscle contraction was involved in the POST versus IBA stage, and peroxisome proliferator-activated receptor delta (Ppard), Myc proto-oncogene (Myc), Sp1 transcription factor (Sp1), and nuclear factor Kappa B subunit 1 (NFκB1) are the common TFs during the hibernation process. Integrated transcriptome and proteome analyses found 18 molecules in the TOR versus PRE stage, 1 molecule in the IBA versus TOR stage, and 16 molecules in the POST versus IBA stage. Among these molecules, carnitine palmitoyltransferase 1A (Cpt1a), SET and MYND domain containing 2 (Smyd2), four and a half LIM domains 1(Fhl1), reactive oxygen species modulator 1 (Romo1), and translocase of the inner mitochondrial membrane 50 (Timm50) were testified by Western blot. In conclusion, novel muscle atrophy resistance mechanisms can be deciphered by time-course transcriptome and proteome analyses based on Metascape.


Assuntos
Hibernação , Sciuridae , Animais , Sciuridae/fisiologia , Transcriptoma , Proteômica , Proteoma/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Hibernação/fisiologia
4.
Mol Pharm ; 18(8): 2959-2973, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34189919

RESUMO

Muscle atrophy usually occurs under mechanical unloading, which increases the risk of injury to reduce the functionality of the moving system, while there is still no effective therapy until now. It was found that miR-194 was significantly downregulated in a muscle atrophy model, and its target protein was the myocyte enhancer factor 2C (MEF2C). miR-194 could promote muscle differentiation and also inhibit ubiquitin ligases, thus miR-194 could be used as a nucleic acid drug to treat muscle atrophy, whereas miRNA was unstable in vivo, limiting its application as a therapeutic drug. A gelatin nanosphere (GN) delivery system was applied for the first time to load exogenous miRNA here. Exogenous miR-194 was loaded in GNs and injected into the muscle atrophy model. It demonstrated that the muscle fiber cross-sectional area, in situ muscle contractile properties, and myogenic markers were increased significantly after treatment. It proposed miR-194 loaded in GNs as an effective treatment for muscle atrophy by promoting muscle differentiation and inhibiting ubiquitin ligase activity. Moreover, the developed miRNA delivery system, taking advantage of its tunable composition, degradation rate, and capacity to load various drug molecules with high dosage, is considered a promising platform to achieve precise treatment of muscle atrophy-related diseases.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Gelatina/química , MicroRNAs/administração & dosagem , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Nanosferas/química , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Fatores de Transcrição MEF2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Ratos , Ratos Sprague-Dawley , Células Satélites de Músculo Esquelético/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA