Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(39): e2402233121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39284054

RESUMO

A fundamental assumption in plant science posits that leaf air spaces remain vapor saturated, leading to the predominant view that stomata alone control leaf water loss. This concept has been pivotal in photosynthesis and water-use efficiency research. However, recent evidence has refuted this longstanding assumption by providing evidence of unsaturation in the leaf air space of C3 plants under relatively mild vapor pressure deficit (VPD) stress. This phenomenon represents a nonstomatal mechanism restricting water loss from the mesophyll. The potential ubiquity and physiological implications of this phenomenon, its driving mechanisms in different plant species and habitats, and its interaction with other ecological adaptations have. In this context, C4 plants spark particular interest for their importance as crops, bundle sheath cells' unique anatomical characteristics and specialized functions, and notably higher water-use efficiency relative to C3 plants. Here, we confirm reduced relative humidities in the substomatal cavity of the C4 plants maize, sorghum, and proso millet down to 80% under mild VPD stress. We demonstrate the critical role of nonstomatal control in these plants, indicating that the role of the CO2 concentration mechanism in CO2 management at a high VPD may have been overestimated. Our findings offer a mechanistic reconciliation between discrepancies in CO2 and VPD responses reported in C4 species. They also reveal that nonstomatal control is integral to maintaining an advantageous microclimate of relatively higher CO2 concentrations in the mesophyll air space of C4 plants for carbon fixation, proving vital when these plants face VPD stress.


Assuntos
Células do Mesofilo , Fotossíntese , Pressão de Vapor , Zea mays , Células do Mesofilo/metabolismo , Zea mays/fisiologia , Zea mays/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Água/metabolismo , Estresse Fisiológico/fisiologia , Dióxido de Carbono/metabolismo , Sorghum/metabolismo , Sorghum/fisiologia , Estômatos de Plantas/fisiologia , Estômatos de Plantas/metabolismo
2.
New Phytol ; 243(6): 2187-2200, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39036838

RESUMO

The superior productivity of C4 plants is achieved via a metabolic C4 cycle which acts as a CO2 pump across mesophyll and bundle sheath (BS) cells and requires an additional input of energy in the form of ATP. The importance of chloroplast NADH dehydrogenase-like complex (NDH) operating cyclic electron flow (CEF) around Photosystem I (PSI) for C4 photosynthesis has been shown in reverse genetics studies but the contribution of CEF and NDH to cell-level electron fluxes remained unknown. We have created gene-edited Setaria viridis with null ndhO alleles lacking functional NDH and developed methods for quantification of electron flow through NDH in BS and mesophyll cells. We show that CEF accounts for 84% of electrons reducing PSI in BS cells and most of those electrons are delivered through NDH while the contribution of the complex to electron transport in mesophyll cells is minimal. A decreased leaf CO2 assimilation rate and growth of plants lacking NDH cannot be rescued by supplying additional CO2. Our results indicate that NDH-mediated CEF is the primary electron transport route in BS chloroplasts highlighting the essential role of NDH in generating ATP required for CO2 fixation by the C3 cycle in BS cells.


Assuntos
Cloroplastos , NADH Desidrogenase , Complexo de Proteína do Fotossistema I , Transporte de Elétrons , Cloroplastos/metabolismo , NADH Desidrogenase/metabolismo , NADH Desidrogenase/genética , Complexo de Proteína do Fotossistema I/metabolismo , Setaria (Planta)/metabolismo , Setaria (Planta)/genética , Dióxido de Carbono/metabolismo , Células do Mesofilo/metabolismo , Fotossíntese , Feixe Vascular de Plantas/metabolismo , Folhas de Planta/metabolismo
3.
Plant Cell Environ ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38867619

RESUMO

Modern plant physiological theory stipulates that the resistance to water movement from plants to the atmosphere is overwhelmingly dominated by stomata. This conception necessitates a corollary assumption-that the air spaces in leaves must be nearly saturated with water vapour; that is, with a relative humidity that does not decline materially below unity. As this idea became progressively engrained in scientific discourse and textbooks over the last century, observations inconsistent with this corollary assumption were occasionally reported. Yet, evidence of unsaturation gained little traction, with acceptance of the prevailing framework motivated by three considerations: (1) leaf water potentials measured by either thermocouple psychrometry or the Scholander pressure chamber are largely consistent with the framework; (2) being able to assume near saturation of intercellular air spaces was transformational to leaf gas exchange analysis; and (3) there has been no obvious mechanism to explain a variable, liquid-phase resistance in the leaf mesophyll. Here, we review the evidence that refutes the assumption of universal, near saturation of air spaces in leaves. Refining the prevailing paradigm with respect to this assumption provides opportunities for identifying and developing mechanisms for increased plant productivity in the face of increasing evaporative demand imposed by global climate change.

4.
Methods Mol Biol ; 2790: 163-211, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38649572

RESUMO

Stable carbon isotopes are a powerful tool to study photosynthesis. Initial applications consisted of determining isotope ratios of plant biomass using mass spectrometry. Subsequently, theoretical models relating C isotope values to gas exchange characteristics were introduced and tested against instantaneous online measurements of 13C photosynthetic discrimination. Beginning in the twenty-first century, laser absorption spectroscopes with sufficient precision for determining isotope mixing ratios became commercially available. This has allowed collection of large data sets at lower cost and with unprecedented temporal resolution. More data and accompanying knowledge have permitted refinement of 13C discrimination model equations, but often at the expense of increased model complexity and difficult parametrization. This chapter describes instantaneous online measurements of 13C photosynthetic discrimination, provides recommendations for experimental setup, and presents a thorough compilation of equations available to researchers. We update our previous 2018 version of this chapter by including recently improved descriptions of (photo)respiratory processes and associated fractionations. We discuss the capabilities and limitations of the diverse 13C discrimination model equations and provide guidance for selecting the model complexity needed for different applications.


Assuntos
Isótopos de Carbono , Fotossíntese , Modelos Biológicos , Dióxido de Carbono/metabolismo , Plantas/metabolismo
5.
New Phytol ; 243(4): 1301-1311, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38453691

RESUMO

Plant leaf temperatures can differ from ambient air temperatures. A temperature gradient in a gas mixture gives rise to a phenomenon known as thermodiffusion, which operates in addition to ordinary diffusion. Whilst transpiration is generally understood to be driven solely by the ordinary diffusion of water vapour along a concentration gradient, we consider the implications of thermodiffusion for transpiration. We develop a new modelling framework that introduces the effects of thermodiffusion on the transpiration rate, E. By applying this framework, we quantify the proportion of E attributable to thermodiffusion for a set of physiological and environmental conditions, varied over a wide range. Thermodiffusion is found to be most significant (in some cases > 30% of E) when a leaf-to-air temperature difference coincides with a relatively small water vapour concentration difference across the boundary layer; a boundary layer conductance that is large as compared to the stomatal conductance; or a relatively low transpiration rate. Thermodiffusion also alters the conditions required for the onset of reverse transpiration, and the rate at which this water vapour uptake occurs.


Assuntos
Modelos Biológicos , Folhas de Planta , Transpiração Vegetal , Temperatura , Água , Transpiração Vegetal/fisiologia , Difusão , Água/fisiologia , Água/metabolismo , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia
6.
New Phytol ; 240(6): 2239-2252, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37814525

RESUMO

The high productive potential, heat resilience, and greater water use efficiency of C4 over C3 plants attract considerable interest in the face of global warming and increasing population, but C4 plants are often sensitive to dehydration, questioning the feasibility of their wider adoption. To resolve the primary effect of dehydration from slower from secondary leaf responses originating within leaves to combat stress, we conducted an innovative dehydration experiment. Four crops grown in hydroponics were forced to a rapid yet controlled decrease in leaf water potential by progressively raising roots of out of the solution while measuring leaf gas exchange. We show that, under rapid dehydration, assimilation decreased more steeply in C4 maize and sorghum than in C3 wheat and sunflower. This reduction was due to a rise of nonstomatal limitation at triple the rate in maize and sorghum than in wheat and sunflower. Rapid reductions in assimilation were previously measured in numerous C4 species across both laboratory and natural conditions. Hence, we deduce that high sensitivity to rapid dehydration might stem from the disturbance of an intrinsic aspect of C4 bicellular photosynthesis. We posit that an obstruction to metabolite transport between mesophyll and bundle sheath cells could be the cause.


Assuntos
Helianthus , Sorghum , Zea mays/metabolismo , Triticum/metabolismo , Sorghum/metabolismo , Helianthus/metabolismo , Desidratação/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Água/metabolismo , Produtos Agrícolas/metabolismo , Grão Comestível/metabolismo , Dióxido de Carbono/metabolismo
7.
New Phytol ; 240(5): 1735-1742, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37823336

RESUMO

Limitations and utility of three measures of water use characteristics were evaluated: water use efficiency (WUE), intrinsic WUE and marginal water cost of carbon gain ( ∂ E / ∂ A ) estimated, respectively, as ratios of assimilation (A) to transpiration (E), of A to stomatal conductance (gs ) and of sensitivities of E and A with variation in gs . Only the measure ∂ E / ∂ A estimates water use strategy in a way that integrates carbon gain relative to water use under varying environmental conditions across scales from leaves to communities. This insight provides updated and simplified ways of estimating ∂ E / ∂ A and adds depth to understanding ways that plants balance water expenditure against carbon gain, uniquely providing a mechanistic means of predicting water use characteristics under changing environmental scenarios.


Assuntos
Fotossíntese , Água , Folhas de Planta , Carbono , Dióxido de Carbono , Transpiração Vegetal , Estômatos de Plantas
8.
Nat Commun ; 14(1): 2820, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198175

RESUMO

Net photosynthetic CO2 assimilation rate (An) decreases at leaf temperatures above a relatively mild optimum (Topt) in most higher plants. This decline is often attributed to reduced CO2 conductance, increased CO2 loss from photorespiration and respiration, reduced chloroplast electron transport rate (J), or deactivation of Ribulose-1,5-bisphosphate Carboxylase Oxygenase (Rubisco). However, it is unclear which of these factors can best predict species independent declines in An at high temperature. We show that independent of species, and on a global scale, the observed decline in An with rising temperatures can be effectively accounted for by Rubisco deactivation and declines in J. Our finding that An declines with Rubisco deactivation and J supports a coordinated down-regulation of Rubisco and chloroplast electron transport rates to heat stress. We provide a model that, in the absence of CO2 supply limitations, can predict the response of photosynthesis to short-term increases in leaf temperature.


Assuntos
Dióxido de Carbono , Ribulose-Bifosfato Carboxilase , Transporte de Elétrons/fisiologia , Temperatura , Ribulose-Bifosfato Carboxilase/metabolismo , Fotossíntese/fisiologia , Plantas/metabolismo , Cloroplastos/metabolismo , Folhas de Planta/metabolismo
9.
New Phytol ; 238(4): 1446-1460, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36751879

RESUMO

We present a robust estimation of the CO2 concentration at the surface of photosynthetic mesophyll cells (cw ), applicable under reasonable assumptions of assimilation distribution within the leaf. We used Capsicum annuum, Helianthus annuus and Gossypium hirsutumas model plants for our experiments. We introduce calculations to estimate cw using independent adaxial and abaxial gas exchange measurements, and accounting for the mesophyll airspace resistances. The cw was lower than adaxial and abaxial estimated intercellular CO2 concentrations (ci ). Differences between cw and the ci of each surface were usually larger than 10 µmol mol-1 . Differences between adaxial and abaxial ci ranged from a few µmol mol-1 to almost 50 µmol mol-1 , where the largest differences were found at high air saturation deficits (ASD). Differences between adaxial and abaxial ci and the ci estimated by mixing both fluxes ranged from -30 to +20 µmol mol-1 , where the largest differences were found under high ASD or high ambient CO2 concentrations. Accounting for cw improves the information that can be extracted from gas exchange experiments, allowing a more detailed description of the CO2 and water vapor gradients within the leaf.


Assuntos
Dióxido de Carbono , Células do Mesofilo , Fotossíntese , Folhas de Planta , Luz
10.
Plant Cell Environ ; 46(1): 23-44, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36200623

RESUMO

Photosynthetic manipulation provides new opportunities for enhancing crop yield. However, understanding and quantifying the importance of individual and multiple manipulations on the seasonal biomass growth and yield performance of target crops across variable production environments is limited. Using a state-of-the-art cross-scale model in the APSIM platform we predicted the impact of altering photosynthesis on the enzyme-limited (Ac ) and electron transport-limited (Aj ) rates, seasonal dynamics in canopy photosynthesis, biomass growth, and yield formation via large multiyear-by-location crop growth simulations. A broad list of promising strategies to improve photosynthesis for C3 wheat and C4 sorghum were simulated. In the top decile of seasonal outcomes, yield gains were predicted to be modest, ranging between 0% and 8%, depending on the manipulation and crop type. We report how photosynthetic enhancement can affect the timing and severity of water and nitrogen stress on the growing crop, resulting in nonintuitive seasonal crop dynamics and yield outcomes. We predicted that strategies enhancing Ac alone generate more consistent but smaller yield gains across all water and nitrogen environments, Aj enhancement alone generates larger gains but is undesirable in more marginal environments. Large increases in both Ac and Aj generate the highest gains across all environments. Yield outcomes of the tested manipulation strategies were predicted and compared for realistic Australian wheat and sorghum production. This study uniquely unpacks complex cross-scale interactions between photosynthesis and seasonal crop dynamics and improves understanding and quantification of the potential impact of photosynthesis traits (or lack of it) for crop improvement research.


Assuntos
Nitrogênio , Água , Austrália
12.
Nat Plants ; 8(8): 971-978, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941216

RESUMO

Stomata are orifices that connect the drier atmosphere with the interconnected network of more humid air spaces that surround the cells within a leaf. Accurate values of the humidities inside the substomatal cavity, wi, and in the air, wa, are needed to estimate stomatal conductance and the CO2 concentration in the internal air spaces of leaves. Both are vital factors in the understanding of plant physiology and climate, ecological and crop systems. However, there is no easy way to measure wi directly. Out of necessity, wi has been taken as the saturation water vapour concentration at leaf temperature, wsat, and applied to the whole leaf intercellular air spaces. We explored the occurrence of unsaturation by examining gas exchange of leaves exposed to various magnitudes of wsat - wa, or Δw, using a double-sided, clamp-on chamber, and estimated degrees of unsaturation from the gradient of CO2 across the leaf that was required to sustain the rate of CO2 assimilation through the upper surface. The relative humidity in the substomatal cavities dropped to about 97% under mild Δw and as dry as around 80% when Δw was large. Measurements of the diffusion of noble gases across the leaf indicated that there were still regions of near 100% humidity distal from the stomatal pores. We suggest that as Δw increases, the saturation edge retreats into the intercellular air spaces, accompanied by the progressive closure of mesophyll aquaporins to maintain the cytosolic water potential.


Assuntos
Dióxido de Carbono , Folhas de Planta , Difusão , Umidade , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Temperatura
13.
Plant Cell Environ ; 45(7): 2019-2036, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35445756

RESUMO

Canola varieties exhibit variation in drought avoidance and drought escape traits, reflecting adaptation to water-deficit environments. Our understanding of underlying genes and their interaction across environments in improving crop productivity is limited. A doubled haploid population was analysed to identify quantitative trait loci (QTL) associated with water-use efficiency (WUE) related traits. High WUE in the vegetative phase was associated with low seed yield. Based on the resequenced parental genome data, we developed sequence-capture-based markers and validated their linkage with carbon isotope discrimination (Δ13 C) in an F2 population. RNA sequencing was performed to determine the expression of candidate genes underlying Δ13 C QTL. QTL contributing to main and QTL × environment interaction effects for Δ13 C and yield were identified. One multiple-trait QTL for Δ13 C, days to flower, plant height, and seed yield was identified on chromosome A09. Interestingly, this QTL region overlapped with a homoeologous exchange (HE) event, suggesting its association with the multiple traits. Transcriptome analysis revealed 121 significantly differentially expressed genes underlying Δ13 C QTL on A09 and C09, including in HE regions. Sorting out the negative relationship between vegetative WUE and seed yield is a priority. Genetic and genomic resources and knowledge so developed could improve canola WUE and yield.


Assuntos
Brassica napus , Locos de Características Quantitativas , Brassica napus/genética , Brassica napus/metabolismo , Mapeamento Cromossômico , Ligação Genética , Fenótipo , Locos de Características Quantitativas/genética , Sementes/genética , Sementes/metabolismo , Água/metabolismo
14.
New Phytol ; 233(1): 156-168, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34192346

RESUMO

Cuticular conductance to water (gcw ) is difficult to quantify for stomatous surfaces due to the complexity of separating cuticular and stomatal transpiration, and additional complications arise for determining adaxial and abaxial gcw . This has led to the neglect of gcw as a separate parameter in most common gas exchange measurements. Here, we describe a simple technique to simultaneously estimate adaxial and abaxial values of gcw , tested in two amphistomatous plant species. What we term the 'Red-Light method' is used to estimate gcw from gas exchange measurements and a known CO2 concentration inside the leaf during photosynthetic induction under red light. We provide an easy-to-use web application to assist with the calculation of gcw . While adaxial and abaxial gcw varies significantly between leaves of the same species we found that the ratio of adaxial/abaxial gcw (γn ) is stable within a plant species. This has implications for use of generic values of gcw when analysing gas exchange data. The Red-Light method can be used to estimate total cuticular conductance (gcw-T ) accurately with the most common setup of gas exchange instruments, i.e. a chamber mixing the adaxial and abaxial gases, allowing for a wide application of this technique.


Assuntos
Fotossíntese , Folhas de Planta , Luz , Água
15.
J Plant Physiol ; 267: 153554, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34749030

RESUMO

The prevalence of phylogenetic constraints in Rubisco evolution has been emphasised recently by (Bouvier et al., 2021), who argued that phylogenetic inheritance limits Rubisco adaptation much more than the biochemical trade-off between specificity, CO2 affinity and turn-over. In this Opinion, we have critically examined how a phylogenetic signal can be computed with Rubisco kinetic properties and phylogenetic trees, and we arrive at a different conclusion. In particular, Rubisco's adaptation is partly driven by C4 vs. C3 photosynthetic conditions in Angiosperms, apparent phylogenetic signals being mostly due to either homoplasy, computation artefacts or the use of nearly identical sister species. While phylogenetic inheritance of an ancestral enzyme form probably has some role in Rubisco's adaptation landscape, it is a minor player, at least compared to microenvironmental conditions such as CO2 and O2 concentrations.


Assuntos
Magnoliopsida/enzimologia , Fotossíntese , Ribulose-Bifosfato Carboxilase , Dióxido de Carbono , Cinética , Filogenia , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo
16.
Plant Cell Environ ; 44(9): 2844-2857, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33938016

RESUMO

An expression was earlier derived for the non-steady state isotopic composition of a leaf when the composition of the water entering the leaf was not necessarily the same as that of the water being transpired (Farquhar and Cernusak 2005). This was relevant to natural conditions because the associated time constant is typically sufficiently long to ensure that the leaf water composition and fluxes of the isotopologues are rarely steady. With the advent of laser-based measurements of isotopologues, leaves have been enclosed in cuvettes and time courses of fluxes recorded. The enclosure modifies the time constant by effectively increasing the resistance to the one-way gross flux out of the stomata because transpiration increases the vapour concentration within the chamber. The resistance is increased from stomatal and boundary layer in series, to stomata, boundary layer and chamber resistance, where the latter is given by the ratio of leaf area to the flow rate out of the chamber. An apparent change in concept from one-way to net flux, introduced by Song, Simonin, Loucos and Barbour (2015) is resolved, and shown to be unnecessary, but the value of their data is reinforced.


Assuntos
Isótopos de Oxigênio/metabolismo , Folhas de Planta/metabolismo , Transpiração Vegetal , Água/metabolismo , Hidrogênio/metabolismo , Modelos Biológicos , Estômatos de Plantas/metabolismo
18.
Nat Plants ; 7(3): 317-326, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33649595

RESUMO

The widely used theory for gas exchange proposed by von Caemmerer and Farquhar (vCF) integrates molar fluxes, mole fraction gradients and ternary effects but does not account for cuticular fluxes, for separation of the leaf surface conditions or for ternary effects within the boundary layer. The magnitude of cuticular conductance to water (gcw) is a key factor for determining plant survival in drought but is difficult to measure and often neglected in routine gas exchange studies. The vCF ternary effect is applied to the total flux without the recognition of different pathways that are affected by it. These simplifications lead to errors in estimations of stomatal conductance, intercellular carbon dioxide concentration (Ci) and other gas exchange parameters. The theory presented here is a more precise physical approach to the electrical resistance analogy for gas exchange, resulting in a more accurate calculation of gas exchange parameters. Additionally, we extend our theory, using physiological concepts, to create a model that allows us to calculate cuticular conductance to water.


Assuntos
Folhas de Planta/metabolismo , Transpiração Vegetal , Plantas/metabolismo , Dióxido de Carbono/metabolismo , Modelos Biológicos , Temperatura , Água/metabolismo
19.
New Phytol ; 229(5): 2413-2445, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32789857

RESUMO

Atmospheric carbon dioxide concentration ([CO2 ]) is increasing, which increases leaf-scale photosynthesis and intrinsic water-use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2 ] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2 ]-driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2 ] (iCO2 ) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre-industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2 , albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.


Assuntos
Sequestro de Carbono , Ecossistema , Atmosfera , Ciclo do Carbono , Dióxido de Carbono , Mudança Climática
20.
Plant Cell Environ ; 44(2): 432-444, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33175397

RESUMO

H2 18 O enrichment develops when leaves transpire, but an accurate generalized mechanistic model has proven elusive. We hypothesized that leaf hydraulic architecture may affect the degree to which gradients in H2 18 O develop within leaves, influencing bulk leaf stable oxygen isotope enrichment (ΔL ) and the degree to which the Péclet effect is relevant in leaves. Leaf hydraulic design predicted the relevance of a Péclet effect to ΔL in 19 of the 21 species tested. Leaves with well-developed hydraulic connections between the vascular tissue and the epidermal cells through bundle sheath extensions and clear distinctions between palisade and spongy mesophyll layers (while the mesophyll is hydraulically disconnected) may have velocities of the transpiration stream such that gradients in H2 18 O develop and are expressed in the mesophyll. In contrast, in leaves where the vascular tissue is hydraulically disconnected from the epidermal layers, or where all mesophyll cells are well connected to the transpiration stream, velocities within the liquid transport pathways may be low enough that gradients in H2 18 O are very small. Prior knowledge of leaf hydraulic design allows informed selection of the appropriate ΔL modelling framework.


Assuntos
Oxigênio/metabolismo , Fenômenos Fisiológicos Vegetais , Transpiração Vegetal/fisiologia , Plantas/anatomia & histologia , Transporte Biológico , Células do Mesofilo/metabolismo , Modelos Biológicos , Isótopos de Oxigênio/análise , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Plântula/anatomia & histologia , Plântula/fisiologia , Água/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA