Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Mol Syst Biol ; 19(4): e11127, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36856068

RESUMO

Cancers represent complex autonomous systems, displaying self-sufficiency in growth signaling. Autonomous growth is fueled by a cancer cell's ability to "secrete-and-sense" growth factors (GFs): a poorly understood phenomenon. Using an integrated computational and experimental approach, here we dissect the impact of a feedback-coupled GTPase circuit within the secretory pathway that imparts secretion-coupled autonomy. The circuit is assembled when the Ras-superfamily monomeric GTPase Arf1, and the heterotrimeric GTPase Giαßγ and their corresponding GAPs and GEFs are coupled by GIV/Girdin, a protein that is known to fuel aggressive traits in diverse cancers. One forward and two key negative feedback loops within the circuit create closed-loop control, allow the two GTPases to coregulate each other, and convert the expected switch-like behavior of Arf1-dependent secretion into an unexpected dose-response alignment behavior of sensing and secretion. Such behavior translates into cell survival that is self-sustained by stimulus-proportionate secretion. Proteomic studies and protein-protein interaction network analyses pinpoint GFs (e.g., the epidermal GF) as key stimuli for such self-sustenance. Findings highlight how the enhanced coupling of two biological switches in cancer cells is critical for multiscale feedback control to achieve secretion-coupled autonomy of growth factors.


Assuntos
Células Eucarióticas , Proteômica , Transdução de Sinais , GTP Fosfo-Hidrolases
2.
Elife ; 52016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27813479

RESUMO

Loss of epithelial polarity impacts organ development and function; it is also oncogenic. AMPK, a key sensor of metabolic stress stabilizes cell-cell junctions and maintains epithelial polarity; its activation by Metformin protects the epithelial barrier against stress and suppresses tumorigenesis. How AMPK protects the epithelium remains unknown. Here, we identify GIV/Girdin as a novel effector of AMPK, whose phosphorylation at a single site is both necessary and sufficient for strengthening mammalian epithelial tight junctions and preserving cell polarity and barrier function in the face of energetic stress. Expression of an oncogenic mutant of GIV (cataloged in TCGA) that cannot be phosphorylated by AMPK increased anchorage-independent growth of tumor cells and helped these cells to evade the tumor-suppressive action of Metformin. This work defines a fundamental homeostatic mechanism by which the AMPK-GIV axis reinforces cell junctions against stress-induced collapse and also provides mechanistic insight into the tumor-suppressive action of Metformin.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas dos Microfilamentos/metabolismo , Junções Íntimas/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Animais , Linhagem Celular , Humanos , Fosforilação , Processamento de Proteína Pós-Traducional
3.
Proc Natl Acad Sci U S A ; 113(39): E5721-30, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27621449

RESUMO

We previously showed that guanine nucleotide-binding (G) protein α subunit (Gα)-interacting vesicle-associated protein (GIV), a guanine-nucleotide exchange factor (GEF), transactivates Gα activity-inhibiting polypeptide 1 (Gαi) proteins in response to growth factors, such as EGF, using a short C-terminal motif. Subsequent work demonstrated that GIV also binds Gαs and that inactive Gαs promotes maturation of endosomes and shuts down mitogenic MAPK-ERK1/2 signals from endosomes. However, the mechanism and consequences of dual coupling of GIV to two G proteins, Gαi and Gαs, remained unknown. Here we report that GIV is a bifunctional modulator of G proteins; it serves as a guanine nucleotide dissociation inhibitor (GDI) for Gαs using the same motif that allows it to serve as a GEF for Gαi. Upon EGF stimulation, GIV modulates Gαi and Gαs sequentially: first, a key phosphomodification favors the assembly of GIV-Gαi complexes and activates GIV's GEF function; then a second phosphomodification terminates GIV's GEF function, triggers the assembly of GIV-Gαs complexes, and activates GIV's GDI function. By comparing WT and GIV mutants, we demonstrate that GIV inhibits Gαs activity in cells responding to EGF. Consequently, the cAMP→PKA→cAMP response element-binding protein signaling axis is inhibited, the transit time of EGF receptor through early endosomes are accelerated, mitogenic MAPK-ERK1/2 signals are rapidly terminated, and proliferation is suppressed. These insights define a paradigm in G-protein signaling in which a pleiotropically acting modulator uses the same motif both to activate and to inhibit G proteins. Our findings also illuminate how such modulation of two opposing Gα proteins integrates downstream signals and cellular responses.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proliferação de Células/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Regulação para Baixo/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Fator de Crescimento Epidérmico/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Transferência Ressonante de Energia de Fluorescência , Subunidades beta da Proteína de Ligação ao GTP , Subunidades gama da Proteína de Ligação ao GTP , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Proteínas dos Microfilamentos/química , Proteínas Mutantes/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica , Proteína Quinase C-theta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Proteínas de Transporte Vesicular/química
4.
Proc Natl Acad Sci U S A ; 112(35): E4874-83, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26286990

RESUMO

Signals propagated by receptor tyrosine kinases (RTKs) can drive cell migration and proliferation, two cellular processes that do not occur simultaneously--a phenomenon called "migration-proliferation dichotomy." We previously showed that epidermal growth factor (EGF) signaling is skewed to favor migration over proliferation via noncanonical transactivation of Gαi proteins by the guanine exchange factor (GEF) GIV. However, what turns on GIV-GEF downstream of growth factor RTKs remained unknown. Here we reveal the molecular mechanism by which phosphorylation of GIV by cyclin-dependent kinase 5 (CDK5) triggers GIV's ability to bind and activate Gαi in response to growth factors and modulate downstream signals to establish a dichotomy between migration and proliferation. We show that CDK5 binds and phosphorylates GIV at Ser1674 near its GEF motif. When Ser1674 is phosphorylated, GIV activates Gαi and enhances promigratory Akt signals. Phosphorylated GIV also binds Gαs and enhances endosomal maturation, which shortens the transit time of EGFR through early endosomes, thereby limiting mitogenic MAPK signals. Consequently, this phosphoevent triggers cells to preferentially migrate during wound healing and transmigration of cancer cells. When Ser1674 cannot be phosphorylated, GIV cannot bind either Gαi or Gαs, Akt signaling is suppressed, mitogenic signals are enhanced due to delayed transit time of EGFR through early endosomes, and cells preferentially proliferate. These results illuminate how GIV-GEF is turned on upon receptor activation, adds GIV to the repertoire of CDK5 substrates, and defines a mechanism by which this unusual CDK orchestrates migration-proliferation dichotomy during cancer invasion, wound healing, and development.


Assuntos
Movimento Celular , Proliferação de Células , Quinase 5 Dependente de Ciclina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Sequência de Aminoácidos , Animais , Receptores ErbB/metabolismo , Humanos , Proteínas dos Microfilamentos/química , Dados de Sequência Molecular , Morfogênese , Fosforilação , Transporte Proteico , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Proteínas de Transporte Vesicular/química , Cicatrização
5.
Dev Cell ; 33(2): 189-203, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25865347

RESUMO

A long-held tenet of heterotrimeric G protein signal transduction is that it is triggered by G protein-coupled receptors (GPCRs) at the PM. Here, we demonstrate that Gi is activated in the Golgi by GIV/Girdin, a non-receptor guanine-nucleotide exchange factor (GEF). GIV-dependent activation of Gi at the Golgi maintains the finiteness of the cyclical activation of ADP-ribosylation factor 1 (Arf1), a fundamental step in vesicle traffic in all eukaryotes. Several interactions with other major components of Golgi trafficking-e.g., active Arf1, its regulator, ArfGAP2/3, and the adaptor protein ß-COP-enable GIV to coordinately regulate Arf1 signaling. When the GIV-Gαi pathway is selectively inhibited, levels of GTP-bound Arf1 are elevated and protein transport along the secretory pathway is delayed. These findings define a paradigm in non-canonical G protein signaling at the Golgi, which places GIV-GEF at the crossroads between signals gated by the trimeric G proteins and the Arf family of monomeric GTPases.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Complexo de Golgi/metabolismo , Proteínas dos Microfilamentos/genética , Vesículas Transportadoras/metabolismo , Proteínas de Transporte Vesicular/genética , Fatores de Ribosilação do ADP/metabolismo , Animais , Sítios de Ligação/genética , Células COS , Linhagem Celular , Membrana Celular/metabolismo , Chlorocebus aethiops , Proteína Coatomer/metabolismo , Ativação Enzimática , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas Ativadoras de GTPase/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas dos Microfilamentos/antagonistas & inibidores , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais , Proteínas de Transporte Vesicular/antagonistas & inibidores
6.
J Biol Chem ; 290(11): 6697-704, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25605737

RESUMO

Activation of trimeric G proteins has been traditionally viewed as the exclusive job of G protein-coupled receptors (GPCRs). This view has been challenged by the discovery of non-receptor activators of trimeric G proteins. Among them, GIV (a.k.a. Girdin) is the first for which a guanine nucleotide exchange factor (GEF) activity has been unequivocally associated with a well defined motif. Here we discuss how GIV assembles alternative signaling pathways by sensing cues from various classes of surface receptors and relaying them via G protein activation. We also describe the dysregulation of this mechanism in disease and how its targeting holds promise for novel therapeutics.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Proteínas dos Microfilamentos/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Proteínas de Transporte Vesicular/metabolismo , Animais , Movimento Celular , Sobrevivência Celular , Proteínas de Ligação ao GTP/química , Humanos , Cirrose Hepática/metabolismo , Proteínas dos Microfilamentos/química , Mitose , Modelos Moleculares , Metástase Neoplásica/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Síndrome Nefrótica/metabolismo , Multimerização Proteica , Proteínas de Transporte Vesicular/química
7.
J Am Soc Nephrol ; 26(2): 314-27, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25012178

RESUMO

Podocytes are critically involved in the maintenance of the glomerular filtration barrier and are key targets of injury in many glomerular diseases. Chronic injury leads to progressive loss of podocytes, glomerulosclerosis, and renal failure. Thus, it is essential to maintain podocyte survival and avoid apoptosis after acute glomerular injury. In normal glomeruli, podocyte survival is mediated via nephrin-dependent Akt signaling. In several glomerular diseases, nephrin expression decreases and podocyte survival correlates with increased vascular endothelial growth factor (VEGF) signaling. How VEGF signaling contributes to podocyte survival and prevents apoptosis remains unknown. We show here that Gα-interacting, vesicle-associated protein (GIV)/girdin mediates VEGF receptor 2 (VEGFR2) signaling and compensates for nephrin loss. In puromycin aminonucleoside nephrosis (PAN), GIV expression increased, GIV was phosphorylated by VEGFR2, and p-GIV bound and activated Gαi3 and enhanced downstream Akt2, mammalian target of rapamycin complex 1 (mTORC1), and mammalian target of rapamycin complex-2 (mTORC2) signaling. In GIV-depleted podocytes, VEGF-induced Akt activation was abolished, apoptosis was triggered, and cell migration was impaired. These effects were reversed by introducing GIV but not a GIV mutant that cannot activate Gαi3. Our data indicate that after PAN injury, VEGF promotes podocyte survival by triggering assembly of an activated VEGFR2/GIV/Gαi3 signaling complex and enhancing downstream PI3K/Akt survival signaling. Because of its important role in promoting podocyte survival, GIV may represent a novel target for therapeutic intervention in the nephrotic syndrome and other proteinuric diseases.


Assuntos
Apoptose/fisiologia , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Podócitos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Nefrose/induzido quimicamente , Nefrose/metabolismo , Nefrose/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Podócitos/patologia , Puromicina Aminonucleosídeo/efeitos adversos , Ratos , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/metabolismo
8.
Kidney Int ; 85(3): 611-23, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24304883

RESUMO

AMP-activated protein kinase (AMPK) is an important energy sensor that may be critical in regulating renal lipid accumulation. To evaluate the role of AMPK in mediating renal lipid accumulation, C57BL/6J mice were randomized to a standard diet, a high-fat diet, or a high-fat diet plus AICAR (an AMPK activator) for 14 weeks. Renal functional and structural studies along with electron microscopy were performed. Mice given the high-fat diet had proximal tubule injury with the presence of enlarged clear vacuoles, and multilaminar inclusions concurrent with an increase of tissue lipid and overloading of the lysosomal system. The margins of the clear vacuoles were positive for the endolysosomal marker, LAMP1, suggesting lysosome accumulation. Characterization of vesicles by special stains (Oil Red O, Nile Red, Luxol Fast Blue) and by electron microscopy showed they contained onion skin-like accumulations consistent with phospholipids. Moreover, cholesteryl esters and phosphatidylcholine-containing phospholipids were significantly increased in the kidneys of mice on a high-fat diet. AMPK activation with chronic AICAR treatment prevented the clinical and structural effects of high-fat diet. Thus, high-fat diet contributes to a dysfunction of the lysosomal system and altered lipid metabolism characterized by cholesterol and phospholipid accumulation in the kidney. AMPK activation normalizes the changes in renal lipid content despite chronic exposure to lipid challenge.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Rim/metabolismo , Metabolismo dos Lipídeos , Albuminúria/prevenção & controle , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Colesterol/metabolismo , Dieta Hiperlipídica , Resistência à Insulina , Rim/patologia , Camundongos Endogâmicos C57BL , Mitocôndrias/fisiologia , Obesidade/prevenção & controle , Ribonucleotídeos/farmacologia
9.
J Cell Biol ; 202(1): 113-27, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23836931

RESUMO

Receptors internalized by endocytosis can return to the plasma membrane (PM) directly from early endosomes (EE; fast recycling) or they can traffic from EE to the endocytic recycling compartment (ERC) and recycle from there (slow recycling). How receptors are sorted for trafficking along these two pathways remains unclear. Here we show that autosomal recessive hypercholesterolemia (ARH) is required for trafficking of megalin, a member of the LDL receptor family, from EE to the ERC by coupling it to dynein; in the absence of ARH, megalin returns directly to the PM from EE via the connecdenn2/Rab35 fast recycling pathway. Binding of ARH to the endocytic adaptor AP-2 prevents fast recycling of megalin. ARH-mediated trafficking of megalin to the ERC is necessary for γ-secretase mediated cleavage of megalin and release of a tail fragment that mediates transcriptional repression. These results identify a novel mechanism for sorting receptors for trafficking to the ERC and link ERC trafficking to regulated intramembrane proteolysis (RIP) and expression of megalin.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Endocitose , Regulação da Expressão Gênica , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteólise , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Dineínas/metabolismo , Endossomos/metabolismo , Ativação Enzimática , Técnicas de Silenciamento de Genes , Humanos , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Mesotelina , Ligação Proteica , Transporte Proteico , Ratos , Fator de Transcrição AP-2/metabolismo , Transcrição Gênica , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
10.
Proc Natl Acad Sci U S A ; 110(14): 5510-5, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23509302

RESUMO

Gα-interacting, vesicle-associated protein (GIV/Girdin) is a multidomain signal transducer that enhances PI3K-Akt signals downstream of both G-protein-coupled receptors and growth factor receptor tyrosine kinases during diverse biological processes and cancer metastasis. Mechanistically, GIV serves as a non-receptor guanine nucleotide exchange factor (GEF) that enhances PI3K signals by activating trimeric G proteins, Gαi1/2/3. Site-directed mutations in GIV's GEF motif disrupt its ability to bind or activate Gi and abrogate PI3K-Akt signals; however, nothing is known about how GIV's GEF function is regulated. Here we report that PKCθ, a novel protein kinase C, down-regulates GIV's GEF function by phosphorylating Ser(S)1689 located within GIV's GEF motif. We demonstrate that PKCθ specifically binds and phosphorylates GIV at S1689, and this phosphoevent abolishes GIV's ability to bind and activate Gαi. HeLa cells stably expressing the phosphomimetic mutant of GIV, GIV-S1689→D, are phenotypically identical to those expressing the GEF-deficient F1685A mutant: Actin stress fibers are decreased and cell migration is inhibited whereas cell proliferation is triggered, and Akt (a.k.a. protein kinase B, PKB) activation is impaired downstream of both the lysophosphatidic acid receptor, a G-protein-coupled receptor, and the insulin receptor, a receptor tyrosine kinase. These findings indicate that phosphorylation of GIV by PKCθ inhibits GIV's GEF function and generates a unique negative feedback loop for downregulating the GIV-Gi axis of prometastatic signaling downstream of multiple ligand-activated receptors. This phosphoevent constitutes the only regulatory pathway described for terminating signaling by any of the growing family of nonreceptor GEFs that modulate G-protein activity.


Assuntos
Isoenzimas/metabolismo , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Modelos Moleculares , Proteína Quinase C/metabolismo , Transdução de Sinais/genética , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Actinas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HeLa , Humanos , Immunoblotting , Imunoprecipitação , Proteínas dos Microfilamentos/genética , Mutação de Sentido Incorreto/genética , Fosforilação , Proteína Quinase C-theta , Proteínas de Transporte Vesicular/genética
11.
PLoS One ; 7(11): e49227, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23145131

RESUMO

Lysophosphatidic acid (LPA) mediates diverse cellular responses through the activation of at least six LPA receptors--LPA(1-6,) but the interacting proteins and signaling pathways that mediate the specificity of these receptors are largely unknown. We noticed that LPA(1) contains a PDZ binding motif (SVV) identical to that present in two other proteins that interact with the PDZ protein GIPC. GIPC is involved in endocytic trafficking of several receptors including TrkA, VEGFR2, lutropin and dopamine D2 receptors. Here we show that GIPC binds directly to the PDZ binding motif of LPA(1) but not that of other LPA receptors. LPA(1) colocalizes and coimmunoprecipitates with GIPC and its binding partner APPL, an activator of Akt signaling found on APPL signaling endosomes. GIPC depletion by siRNA disturbed trafficking of LPA(1) to EEA1 early endosomes and promoted LPA(1) mediated Akt signaling, cell proliferation, and cell motility. We propose that GIPC binds LPA(1) and promotes its trafficking from APPL-containing signaling endosomes to EEA1 early endosomes and thus attenuates LPA-mediated Akt signaling from APPL endosomes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Endossomos/metabolismo , Lisofosfolipídeos/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Motivos de Aminoácidos , Sítios de Ligação , Movimento Celular , Proliferação de Células , Células HEK293 , Células HeLa , Humanos , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
12.
Mol Biol Cell ; 23(23): 4623-34, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23051738

RESUMO

The organization of the endocytic system into biochemically distinct subcompartments allows for spatial and temporal control of the strength and duration of signaling. Recent work has established that Akt cell survival signaling via the epidermal growth factor receptor (EGFR) occurs from APPL early endosomes that mature into early EEA1 endosomes. Less is known about receptor signaling from EEA1 endosomes. We show here that EGF-induced, proliferative signaling occurs from EEA1 endosomes and is regulated by the heterotrimeric G protein Gαs through interaction with the signal transducing protein GIV (also known as Girdin). When Gαs or GIV is depleted, activated EGFR and its adaptors accumulate in EEA1 endosomes, and EGFR signaling is prolonged, EGFR down-regulation is delayed, and cell proliferation is greatly enhanced. Our findings define EEA1 endosomes as major sites for proliferative signaling and establish that Gαs and GIV regulate EEA1 but not APPL endosome maturation and determine the duration and strength of proliferative signaling from this compartment.


Assuntos
Endossomos , Receptores ErbB/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Proteínas dos Microfilamentos , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células COS , Proliferação de Células , Transformação Celular Neoplásica , Chlorocebus aethiops , Endossomos/metabolismo , Endossomos/ultraestrutura , Receptores ErbB/genética , Células HeLa , Humanos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Proteínas de Transporte Vesicular/genética
13.
Annu Rev Cell Dev Biol ; 28: 1-28, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22831641

RESUMO

In this perspective, I review the scientific career of George E. Palade, the man many consider to be the father of cell biology. Palade's scientific contributions spanned more than 50 years (from the late 1940s to 2001) and were amazingly diverse and fundamental. He is best known for his discovery of ribosomes, for establishing their role in protein synthesis, and for delineation of the secretory pathway. In addition to these groundbreaking contributions, he also developed basic techniques for tissue preservation and cell fractionation that allowed rapid progress during the early days of cell biology, and he and his collaborators provided the first description of the mitochondrial cristae, neuronal synapses, junctional complexes in epithelia, plasmalemmal vesicles, and Weibel-Palade bodies in endothelium, among others. He and his collaborators also contributed key experimental data to our understanding not only of protein synthesis and the secretory process but also of membrane biogenesis and vascular permeability. In addition to his scientific discoveries, he had a profound impact on the lives of many cell biologists and served the scientific community tirelessly while making major contributions to the development of cell biology in three major institutions.


Assuntos
Biologia Celular/história , California , Connecticut , História do Século XX , História do Século XXI , Prêmio Nobel , Romênia
14.
Mol Biol Cell ; 23(17): 3370-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22809625

RESUMO

Podocytes are insulin-sensitive and take up glucose in response to insulin. This requires nephrin, which interacts with vesicle-associated membrane protein 2 (VAMP2) on GLUT4 storage vesicles (GSVs) and facilitates their fusion with the plasma membrane. In this paper, we show that the filament-forming GTPase septin 7 is expressed in podocytes and associates with CD2-associated protein (CD2AP) and nephrin, both essential for glomerular ultrafiltration. In addition, septin 7 coimmunoprecipitates with VAMP2. Subcellular fractionation of cultured podocytes revealed that septin 7 is found in both cytoplasmic and membrane fractions, and immunofluorescence microscopy showed that septin 7 is expressed in a filamentous pattern and is also found on vesicles and the plasma membrane. The filamentous localization of septin 7 depends on CD2AP and intact actin organization. A 2-deoxy-d-glucose uptake assay indicates that depletion of septin 7 by small interfering RNA or alteration of septin assembly by forchlorfenuron facilitates glucose uptake into cells and further, knockdown of septin 7 increased the interaction of VAMP2 with nephrin and syntaxin 4. The data indicate that septin 7 hinders GSV trafficking and further, the interaction of septin 7 with nephrin in glomeruli suggests that septin 7 may participate in the regulation of glucose transport in podocytes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Proteínas de Membrana/metabolismo , Septinas/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Animais , Membrana Celular/metabolismo , Células Cultivadas , Humanos , Insulina/farmacologia , Camundongos , Compostos de Fenilureia/farmacologia , Podócitos/metabolismo , Transporte Proteico , Piridinas/farmacologia , Proteínas Qa-SNARE/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Septinas/genética
15.
Proc Natl Acad Sci U S A ; 109(18): 6916-21, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22509010

RESUMO

Hypercholesterolemia, high serum cholesterol in the form of LDL, is a major risk factor for atherosclerosis. LDL is mostly degraded in the liver after its cellular internalization with the LDL receptor (LDLR). This clathrin-mediated endocytosis depends on the protein autosomal recessive hypercholesterolemia (ARH), which binds the LDLR cytoplasmic tail. Mutations in either the LDLR tail or in ARH lead to hypercholesterolemia and premature atherosclerosis. Despite the significance of this interaction for cholesterol homeostasis, no structure of either ARH or the LDLR tail is available to determine its molecular basis. We report the crystal structure at 1.37-Å resolution of the phosphotyrosine-binding (PTB) domain of ARH in complex with an LDLR tail peptide containing the FxNPxY(0) internalization signal. Surprisingly, ARH interacts with a longer portion of the tail than previously recognized, which extends to I(-7)xF(-5)xNPxY(0)QK(+2). The LDLR tail assumes a unique "Hook"-like structure with a double ß-turn conformation, which is accommodated in distinctive ARH structural determinants (i.e., an extended backbone hydrogen-bonding platform, three hydrophobic helical grooves, and a hydrophobic pocket for Y(0)). This unique complementarity differs significantly in related PTB proteins and may account for the unique physiological role of these partners in the hepatic uptake of cholesterol LDL. Moreover, the unusual hydrophobic pocket for Y(0) explains the distinctive ability of ARH to internalize proteins containing either FxNPxY(0) or FxNPxF(0) sequences. Biophysical measurements reveal how mutations associated with hypercholesterolemia destabilize ARH and its complex with LDLR and illuminate LDL internalization defects seen in patients.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Receptores de LDL/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Aterosclerose/etiologia , Aterosclerose/genética , Aterosclerose/metabolismo , LDL-Colesterol/metabolismo , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Hipercolesterolemia/etiologia , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Técnicas In Vitro , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos , Mutação , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Estrutura Secundária de Proteína , Ratos , Receptores de LDL/genética , Receptores de LDL/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Eletricidade Estática
16.
Dev Biol ; 364(1): 11-21, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22290330

RESUMO

Genetic interactions regulating intermediate stages of tubulogenesis in the developing kidney have been difficult to define. A systems biology strategy using microarray was combined with in vitro/ex vivo and genetic approaches to identify pathways regulating specific stages of tubulogenesis. Analysis of the progression of the metanephric mesenchyme (MM) through four stages of tubule induction and differentiation (i.e., epithelialization, tubular organization and elongation and early differentiation) revealed signaling pathways potentially involved at each stage and suggested key roles for a number of signaling molecules. A screen of the signaling pathways on in vitro/ex vivo nephron formation implicated a unique regulatory role for protein kinase A (PKA), through PKA-2, in a specific post-epithelialization morphogenetic step (conversion of the renal vesicle to the S-shaped body). Microarray analysis not only confirmed this stage-specificity, but also highlighted the upregulation of Wnt genes. Addition of PKA agonists to LIF-induced nephrons (previously shown to be a Wnt/beta-catenin dependent pathway) disrupted normal tubulogenesis in a manner similar to PKA-agonist treated MM/spinal-cord assays, suggesting that PKA regulates a Wnt-dependent tubulogenesis step. PKA induction of canonical Wnt signaling during tubulogenesis was confirmed genetically using MM from Batgal-reporter mice. Addition of a Wnt synthesis inhibitor to activated PKA cultures rescued tubulogenesis. By re-analysis of existing microarray data from the FGF8, Lim1 and Wnt4 knockouts, which arrest in early tubulogenesis, a network of genes involving PKA, Wnt, Lhx1, FGF8, and hyaluronic acid signaling regulating the transition of nascent epithelial cells to tubular epithelium was derived, helping to reconcile in vivo and in vitro/ex vivo data.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Túbulos Renais/embriologia , Túbulos Renais/metabolismo , Via de Sinalização Wnt , Animais , Técnicas de Cocultura , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Matriz Extracelular/metabolismo , Ratos , Via de Sinalização Wnt/efeitos dos fármacos
17.
Proc Natl Acad Sci U S A ; 109(6): 1961-6, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22308453

RESUMO

Heterotrimeric G proteins are critical signal-transducing molecules controlled by a complex network of regulators. GIV (a.k.a. Girdin) is a unique component of this network and a nonreceptor guanine nucleotide exchange factor (GEF) that functions via a signature motif. GIV's GEF motif is involved in the regulation of critical biological processes such as phosphoinositide 3 kinase (PI3K)-Akt signaling, actin cytoskeleton remodeling, cell migration, and cancer metastasis. Here we investigated how the GEF function of GIV affects the wiring of its signaling pathway to shape different biological responses. Using a structure-guided approach, we designed a battery of GIV mutants with different Gαi-binding and -activating properties and used it to dissect the specific impact of changes in GIV's GEF activity on several cellular responses. In vivo signaling assays revealed a threshold effect of GEF activity for the activation of Akt by GIV in different cell lines and by different stimuli. Akt signaling is minimal at low GEF activity and is sharply increased to reach a maximum above a threshold of GEF activity, suggesting that GIV is a critical signal amplifier and that activation of Akt is ultrasensitive to changes in GIV's GEF activity. A similar threshold dependence was observed for other biological functions promoted by GIV such as remodeling of the actin cytoskeleton and cell migration. This functional characterization of GIV's GEF motif provides insights into the molecular interactions between nonreceptor GEFs and G proteins and the mechanisms that govern this signal transduction pathway.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/química , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Transdução de Sinais , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Movimento Celular/efeitos dos fármacos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Células HeLa , Humanos , Insulina/farmacologia , Lisofosfolipídeos/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fibras de Estresse/efeitos dos fármacos , Fibras de Estresse/metabolismo
18.
Am J Pathol ; 179(5): 2254-65, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21945805

RESUMO

Podocalyxin (PC) is a polysialylated, anti-adhesin that is essential for maintaining foot process architecture and the integrity of the glomerular filtration barrier. We showed previously that PC is firmly attached to the actin cytoskeleton through ezrin, that in puromycin aminonucleoside (PAN)-mediated nephrosis the PC-ezrin-actin complex is disrupted, and that PC is uncoupled from actin. However, the precise mechanisms involved remained unknown. Here we show that detachment of PC from actin is regulated by phosphorylation of PC. PC is hyperphosphorylated at serines in PAN- and protamine sulfate (PS)-treated rat glomeruli. We determined that PC is a substrate of PKC and that the site of phosphorylation is Ser415, located within the juxtamembrane, ezrin-binding domain of the cytoplasmic tail of PC. Mutation of Ser415 to the phosphomimetic residues Glu (S415E) or Asp (S415D) interfered with direct binding of the PC cytoplasmic tail to ezrin in vitro. Moreover, stable expression of a phosphomimetic (S415E) PC mutant but not the WT or the phosphorylation-deficient (S415A) PC mutant, disrupted PC-ezrin-actin interaction, failed to activate RhoA, and the cytoskeletal linker, ezrin, remained inactive. Our data indicate that phosphorylation of PC at Ser415 prevents attachment of PC and ezrin to actin and highlights the strategic position of Ser415 and direct binding of PC to ezrin in regulating podocyte foot process architecture.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas do Citoesqueleto/antagonistas & inibidores , Sialoglicoproteínas/metabolismo , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Animais , Células Cultivadas , Glomérulos Renais/metabolismo , Masculino , Microscopia Confocal , Microscopia de Fluorescência , Nefrose/metabolismo , Fosforilação/fisiologia , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Transfecção
19.
J Biol Chem ; 286(32): 28138-49, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21653697

RESUMO

Heterotrimeric G proteins are molecular switches modulated by families of structurally and functionally related regulators. GIV (Gα-interacting vesicle-associated protein) is the first non-receptor guanine nucleotide exchange factor (GEF) that activates Gα(i) subunits via a defined, evolutionarily conserved motif. Here we found that Calnuc and NUCB2, two highly homologous calcium-binding proteins, share a common motif with GIV for Gα(i) binding and activation. Bioinformatics searches and structural analysis revealed that Calnuc and NUCB2 possess an evolutionarily conserved motif with sequence and structural similarity to the GEF sequence of GIV. Using in vitro pulldown and competition assays, we demonstrate that this motif binds preferentially to the inactive conformation of Gα(i1) and Gα(i3) over other Gα subunits and, like GIV, docks onto the α3/switch II cleft. Calnuc binding was impaired when Lys-248 in the α3 helix of Gα(i3) was replaced with M, the corresponding residue in Gα(o), which does not bind to Calnuc. Moreover, mutation of hydrophobic residues in the conserved motif predicted to dock on the α3/switch II cleft of Gα(i3) impaired the ability of Calnuc and NUCB2 to bind and activate Gα(i3) in vitro. We also provide evidence that calcium binding to Calnuc and NUCB2 abolishes their interaction with Gα(i3) in vitro and in cells, probably by inducing a conformational change that renders the Gα(i)-binding residues inaccessible. Taken together, our results identify a new type of Gα(i)-regulatory motif named the GBA motif (for Gα-binding and -activating motif), which is conserved across different proteins throughout evolution. These findings provide the structural basis for the properties of Calnuc and NUCB2 binding to Gα subunits and its regulation by calcium ions.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Motivos de Aminoácidos , Animais , Sítios de Ligação , Células COS , Cálcio/química , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Chlorocebus aethiops , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Humanos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Nucleobindinas , Mapeamento de Peptídeos , Ligação Proteica , Ratos , Relação Estrutura-Atividade
20.
Cell Adh Migr ; 5(3): 237-48, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21546796

RESUMO

GIV/Girdin is a multidomain signaling molecule that enhances PI3K-Akt signals downstream of both G protein-coupled and growth factor receptors. We previously reported that GIV triggers cell migration via its C-terminal guanine-nucleotide exchange factor (GEF) motif that activates Gαi. Recently we discovered that GIV's C-terminus directly interacts with the epidermal growth factor receptor (EGFR), and when its GEF function is intact, a Gαi-GIV-EGFR signaling complex assembles. By coupling G proteins to growth factor receptors, GIV is uniquely poised to intercept the incoming receptor-initiated signals and modulate them via G protein intermediates. Subsequent work has revealed that expression of the highly specialized C-terminus of GIV undergoes a bipartite dysregulation during oncogenesis-full length GIV with an intact C-terminus is expressed at levels ~20-50-fold above normal in highly invasive cancer cells and metastatic tumors, but its C-terminus is truncated by alternative splicing in poorly invasive cancer cells and non-invasive tumors. The consequences of such dysregulation on graded signal transduction and cellular phenotypes in the normal epithelium and its implication during tumor progression are discussed herein. Based on the fact that GIV grades incoming signals initiated by ligand-activated receptors by linking them to cyclical activation of G proteins, we propose that GIV is a molecular rheostat for signal transduction.


Assuntos
Proteínas dos Microfilamentos/metabolismo , Neoplasias/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Modelos Biológicos , Neoplasias/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/genética , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA