RESUMO
Heterozygous loss-of-function mutations in the progranulin gene (GRN) are a major cause of frontotemporal dementia due to progranulin haploinsufficiency; complete deficiency of progranulin causes neuronal ceroid lipofuscinosis. Several progranulin-deficient mouse models have been generated, including both knockout mice and knockin mice harboring a common patient mutation (R493X). However, the GrnR493X mouse model has not been characterized completely. Additionally, while homozygous GrnR493X and Grn knockout mice have been extensively studied, data from heterozygous mice is still limited. Here, we performed more in-depth characterization of heterozygous and homozygous GrnR493X knockin mice, which includes biochemical assessments, behavioral studies, and analysis of fluid biomarkers. In the brains of homozygous GrnR493X mice, we found increased phosphorylated TDP-43 along with increased expression of lysosomal genes, markers of microgliosis and astrogliosis, pro-inflammatory cytokines, and complement factors. Heterozygous GrnR493X mice did not have increased TDP-43 phosphorylation but did exhibit limited increases in lysosomal and inflammatory gene expression. Behavioral studies found social and emotional deficits in GrnR493X mice that mirror those observed in Grn knockout mouse models, as well as impairment in memory and executive function. Overall, the GrnR493X knockin mouse model closely phenocopies Grn knockout models. Lastly, in contrast to homozygous knockin mice, heterozygous GrnR493X mice do not have elevated levels of fluid biomarkers previously identified in humans, including neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) in both plasma and CSF. These results may help to inform pre-clinical studies that use this Grn knockin mouse model and other Grn knockout models.
Assuntos
Comportamento Animal , Biomarcadores , Modelos Animais de Doenças , Demência Frontotemporal , Progranulinas , Animais , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Progranulinas/genética , Progranulinas/metabolismo , Biomarcadores/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Heterozigoto , Masculino , Encéfalo/metabolismo , Encéfalo/patologia , Fosforilação , Lisossomos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Técnicas de Introdução de GenesRESUMO
RATIONALE: Lung T1 MRI is a potential method to assess cystic fibrosis (CF) lung disease that is safe, quick, and widely available, but there are no data in children with mild CF lung disease. OBJECTIVE: Assess the ability of lung T1 MRI to detect abnormalities in children with mild CF lung disease. METHODS: We performed T1 MRI, multiple breath washout (MBW), chest computed tomography (CT), and spirometry in a cohort of 45 children with mild CF lung disease (6-11 years of age). MAIN RESULTS: Despite mean normal ppFEV1 values, the majority of children with CF in this study exhibited mild lung disease evident in lung clearance index (LCI) measured by MBW, chest CT Brody scores, and percent normal lung perfusion (%NLP) measured by T1 MRI. The %NLP correlated with chest CT Brody scores, as did LCI, but %NLP and LCI did not correlate with each other. Analysis of the Brody subscores showed that %NLP and LCI largely correlated with different Brody subscores. CONCLUSIONS: T1 MRI can detect mild CF lung disease in children and correlates with chest CT findings. The %NLP from T1 MRI and LCI correlate with different chest CT Brody subscores, suggesting they provide complementary information about CF lung disease.
RESUMO
ABSTRACT: Neuropathic pain is a devastating condition where current therapeutics offer little to no pain relief. Novel nonnarcotic therapeutic targets are needed to address this growing medical problem. Our work identified the G-protein-coupled receptor 160 (GPR160) as a potential target for therapeutic intervention. However, the lack of small-molecule ligands for GPR160 hampers our understanding of its role in health and disease. To address this void, we generated a global Gpr160 knockout (KO) mouse using CRISPR-Cas9 genome editing technology to validate the contributions of GPR160 in nociceptive behaviors in mice. Gpr160 KO mice are healthy and fertile, with no observable physical abnormalities. Gpr160 KO mice fail to develop behavioral hypersensitivities in a model of neuropathic pain caused by constriction of the sciatic nerve. On the other hand, responses of Gpr160 KO mice in the hot-plate and tail-flick assays are not affected. We recently deorphanized GPR160 and identified cocaine- and amphetamine-regulated transcript peptide (CARTp) as a potential ligand. Using Gpr160 KO mice, we now report that the development of behavioral hypersensitivities after intrathecal or intraplantar injections of CARTp are dependent on GPR160. Cocaine- and amphetamine-regulated transcript peptide plays a role in various affective behaviors, such as anxiety, depression, and cognition. There are no differences in learning, memory, and anxiety between Gpr160 KO mice and their age-matched and sex-matched control floxed mice. Results from these studies support the pronociceptive roles of CARTp/GPR160 and GPR160 as a potential therapeutic target for treatment of neuropathic pain.
Assuntos
Receptores Acoplados a Proteínas G , Animais , Feminino , Masculino , Camundongos , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Hiperalgesia/metabolismo , Hiperalgesia/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuralgia/metabolismo , Neuralgia/genética , Medição da Dor/métodos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismoRESUMO
Heterozygous loss-of-function mutations in the progranulin gene (GRN) are a major cause of frontotemporal dementia due to progranulin haploinsufficiency; complete deficiency of progranulin causes neuronal ceroid lipofuscinosis. Several progranulin-deficient mouse models have been generated, including both knockout mice and knockin mice harboring a common patient mutation (R493X). However, the GrnR493X mouse model has not been characterized completely. Additionally, while homozygous GrnR493X and Grn knockout mice have been extensively studied, data from heterozygous mice is still limited. Here, we performed more in-depth characterization of heterozygous and homozygous GrnR493X knockin mice, which includes biochemical assessments, behavioral studies, and analysis of fluid biomarkers. In the brains of homozygous GrnR493X mice, we found increased phosphorylated TDP-43 along with increased expression of lysosomal genes, markers of microgliosis and astrogliosis, pro-inflammatory cytokines, and complement factors. Heterozygous GrnR493X mice did not have increased TDP-43 phosphorylation but did exhibit limited increases in lysosomal and inflammatory gene expression. Behavioral studies found social and emotional deficits in GrnR493X mice that mirror those observed in Grn knockout mouse models, as well as impairment in memory and executive function. Overall, the GrnR493X knockin mouse model closely phenocopies Grn knockout models. Lastly, in contrast to homozygous knockin mice, heterozygous GrnR493X mice do not have elevated levels of fluid biomarkers previously identified in humans, including neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) in both plasma and CSF. These results may help to inform pre-clinical studies that use this Grn knockin mouse model and other Grn knockout models.
RESUMO
Heterozygous GRN (progranulin) mutations cause frontotemporal dementia (FTD) due to haploinsufficiency, and increasing progranulin levels is a major therapeutic goal. Several microRNAs, including miR-29b, negatively regulate progranulin protein levels. Antisense oligonucleotides (ASOs) are emerging as a promising therapeutic modality for neurological diseases, but strategies for increasing target protein levels are limited. Here, we tested the efficacy of ASOs as enhancers of progranulin expression by sterically blocking the miR-29b binding site in the 3' UTR of the human GRN mRNA. We found 16 ASOs that increase progranulin protein in a dose-dependent manner in neuroglioma cells. A subset of these ASOs also increased progranulin protein in iPSC-derived neurons and in a humanized GRN mouse model. In FRET-based assays, the ASOs effectively competed for miR-29b from binding to the GRN 3' UTR RNA. The ASOs increased levels of newly synthesized progranulin protein by increasing its translation, as revealed by polysome profiling. Together, our results demonstrate that ASOs can be used to effectively increase target protein levels by partially blocking miR binding sites. This ASO strategy may be therapeutically feasible for progranulin-deficient FTD as well as other conditions of haploinsufficiency.
Assuntos
Demência Frontotemporal , MicroRNAs , Oligonucleotídeos Antissenso , Progranulinas , Animais , Humanos , Camundongos , Regiões 3' não Traduzidas , Sítios de Ligação , Demência Frontotemporal/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , MicroRNAs/genética , Mutação , Oligonucleotídeos Antissenso/genética , Progranulinas/genética , RNA Mensageiro/genéticaRESUMO
The etiology for late-onset Alzheimer's disease (LOAD), which accounts for >95% of Alzheimer's disease (AD) cases, is unknown. Emerging evidence suggests that cellular senescence contributes importantly to AD pathophysiology, although the mechanisms underlying brain cell senescence and by which senescent cells promote neuro-pathophysiology remain unclear. In this study we show for the first time that the expression of plasminogen activator inhibitor 1 (PAI-1), a serine protease inhibitor, is increased, in correlation with the increased expression of cell cycle repressors p53 and p21, in the hippocampus/cortex of senescence accelerated mouse prone 8 (SAMP8) mice and LOAD patients. Double immunostaining results show that astrocytes in the brain of LOAD patients and SAMP8 mice express higher levels of senescent markers and PAI-1, compared to astrocytes in the corresponding controls. In vitro studies further show that overexpression of PAI-1 alone, intracellularly or extracellularly, induced senescence, whereas inhibition or silencing PAI-1 attenuated H2O2-induced senescence, in primary mouse and human astrocytes. Treatment with the conditional medium (CM) from senescent astrocytes induced neuron apoptosis. Importantly, the PAI-1 deficient CM from senescent astrocytes that overexpress a secretion deficient PAI-1 (sdPAI-1) has significantly reduced effect on neurons, compared to the PAI-1 containing CM from senescent astrocytes overexpressing wild type PAI-1 (wtPAI-1), although sdPAI-1 and wtPAI-1 induce similar degree of astrocyte senescence. Together, our results suggest that increased PAI-1, intracellularly or extracellularly, may contribute to brain cell senescence in LOAD and that senescent astrocytes can induce neuron apoptosis through secreting pathologically active molecules, including PAI-1.
RESUMO
A common cause of frontotemporal dementia (FTD) are nonsense mutations in the progranulin (GRN) gene. Because nonsense mutations activate the nonsense-mediated RNA decay (NMD) pathway, we sought to inhibit this RNA turnover pathway as a means to increase progranulin levels. Using a knock-in mouse model harboring a common patient mutation, we tested whether either pharmacological or genetic inhibition of NMD upregulates progranulin in these GrnR493X mice. We first examined antisense oligonucleotides (ASOs) targeting an exonic region in GrnR493X mRNA predicted to block its degradation by NMD. As we previously reported, these ASOs effectively increased GrnR493X mRNA levels in fibroblasts in vitro. However, following CNS delivery, we found that none of the 8 ASOs we tested increased Grn mRNA levels in the brains of GrnR493X mice. This result was obtained despite broad ASO distribution in the brain. An ASO targeting a different mRNA was effective when administered in parallel to wild-type mice. As an independent approach to inhibit NMD, we examined the effect of loss of an NMD factor not required for embryonic viability: UPF3b. We found that while Upf3b deletion effectively perturbed NMD, it did not increase Grn mRNA levels in Grn+/R493X mouse brains. Together, our results suggest that the NMD-inhibition approaches that we used are likely not viable for increasing progranulin levels in individuals with FTD caused by nonsense GRN mutations. Thus, alternative approaches should be pursued.
Assuntos
Demência Frontotemporal , Camundongos , Animais , Progranulinas/genética , Demência Frontotemporal/genética , RNA , Códon sem Sentido , RNA Mensageiro/genética , Degradação do RNAm Mediada por Códon sem Sentido , Modelos Animais de Doenças , Proteínas de Ligação a RNA/genéticaRESUMO
COVID-19 and especially Long COVID are associated with severe CNS symptoms and may place persons at risk to develop long-term cognitive impairments. Here, we show that two non-infective models of SARS-CoV-2 can cross the blood-brain barrier (BBB) and induce neuroinflammation, a major mechanism underpinning CNS and cognitive impairments, even in the absence of productive infection. The viral models cross the BBB by the mechanism of adsorptive transcytosis with the sugar N-acetylglucosamine being key. The delta and omicron variants cross the BB B faster than the other variants of concern, with peripheral tissue uptake rates also differing for the variants. Neuroinflammation induced by icv injection of S1 protein was greatly enhanced in young and especially in aged SAMP8 mice, a model of Alzheimer's disease, whereas sex and obesity had little effect.
Assuntos
Doença de Alzheimer , COVID-19 , Humanos , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Doença de Alzheimer/metabolismo , SARS-CoV-2 , COVID-19/complicações , Doenças Neuroinflamatórias , Síndrome de COVID-19 Pós-AgudaRESUMO
The geroscience hypothesis states that a therapy that prevents the underlying aging process should prevent multiple aging related diseases. The mTOR (mechanistic target of rapamycin)/insulin and NAD+ (nicotinamide adenine dinucleotide) pathways are two of the most validated aging pathways. Yet, it's largely unclear how they might talk to each other in aging. In genome-wide CRISPRa screening with a novel class of N-O-Methyl-propanamide-containing compounds we named BIOIO-1001, we identified lipid metabolism centering on SIRT3 as a point of intersection of the mTOR/insulin and NAD+ pathways. In vivo testing indicated that BIOIO-1001 reduced high fat, high sugar diet-induced metabolic derangements, inflammation, and fibrosis, each being characteristic of non-alcoholic steatohepatitis (NASH). An unbiased screen of patient datasets suggested a potential link between the anti-inflammatory and anti-fibrotic effects of BIOIO-1001 in NASH models to those in amyotrophic lateral sclerosis (ALS). Directed experiments subsequently determined that BIOIO-1001 was protective in both sporadic and familial ALS models. Both NASH and ALS have no treatments and suffer from a lack of convenient biomarkers to monitor therapeutic efficacy. A potential strength in considering BIOIO-1001 as a therapy is that the blood biomarker that it modulates, namely plasma triglycerides, can be conveniently used to screen patients for responders. More conceptually, to our knowledge BIOIO-1001 is a first therapy that fits the geroscience hypothesis by acting on multiple core aging pathways and that can alleviate multiple conditions after they have set in.
RESUMO
Cancer-related cognitive impairment (CRCI) is a major neurotoxicity affecting more than 50% of cancer survivors. The underpinning mechanisms are mostly unknown, and there are no FDA-approved interventions. Sphingolipidomic analysis of mouse prefrontal cortex and hippocampus, key sites of cognitive function, revealed that cisplatin increased levels of the potent signaling molecule sphingosine-1-phosphate (S1P) and led to cognitive impairment. At the biochemical level, S1P induced mitochondrial dysfunction, activation of NOD-, LRR-, and pyrin domain-containing protein 3 inflammasomes, and increased IL-1ß formation. These events were attenuated by systemic administration of the functional S1P receptor 1 (S1PR1) antagonist FTY720, which also attenuated cognitive impairment without adversely affecting locomotor activity. Similar attenuation was observed with ozanimod, another FDA-approved functional S1PR1 antagonist. Mice with astrocyte-specific deletion of S1pr1 lost their ability to respond to FTY720, implicating involvement of astrocytic S1PR1. Remarkably, our pharmacological and genetic approaches, coupled with computational modeling studies, revealed that cisplatin increased S1P production by activating TLR4. Collectively, our results identify the molecular mechanisms engaged by the S1P/S1PR1 axis in CRCI and establish S1PR1 antagonism as an approach to target CRCI with therapeutics that have fast-track clinical application.
Assuntos
Disfunção Cognitiva , Cloridrato de Fingolimode , Animais , Sistema Nervoso Central/metabolismo , Cisplatino/efeitos adversos , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/genética , Cloridrato de Fingolimode/farmacologia , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/genéticaRESUMO
Cisplatin is used to combat solid tumors. However, patients treated with cisplatin often develop cognitive impairments, sensorimotor deficits, and peripheral neuropathy. There is no FDA-approved treatment for these neurotoxicities. We investigated the capacity of a highly selective A3 adenosine receptor (AR) subtype (A3AR) agonist, MRS5980, to prevent and reverse cisplatin-induced neurotoxicities. MRS5980 prevented cisplatin-induced cognitive impairment (decreased executive function and impaired spatial and working memory), sensorimotor deficits, and neuropathic pain (mechanical allodynia and spontaneous pain) in both sexes. At the structural level, MRS5980 prevented the cisplatin-induced reduction in markers of synaptic integrity. In-situ hybridization detected Adora3 mRNA in neurons, microglia, astrocytes and oligodendrocytes. RNAseq analysis identified 164 genes, including genes related to mitochondrial function, of which expression was changed by cisplatin and normalized by MRS5980. Consistently, MRS5980 prevented cisplatin-induced mitochondrial dysfunction and decreased signs of oxidative stress. Transcriptomic analysis showed that the A3AR agonist upregulates genes related to repair pathways including NOTCH1 signaling and chromatin modification in the cortex of cisplatin-treated mice. Importantly, A3AR agonist administration after completion of cisplatin treatment resolved cognitive impairment, neuropathy and sensorimotor deficits. Our results highlight the efficacy of a selective A3AR agonist to prevent and reverse cisplatin-induced neurotoxicities via preventing brain mitochondrial damage and activating repair pathways. An A3AR agonist is already in cancer, clinical trials and our results demonstrate management of neurotoxic side effects of chemotherapy as an additional therapeutic benefit.
Assuntos
Agonistas do Receptor A3 de Adenosina/farmacologia , Antineoplásicos/efeitos adversos , Comprometimento Cognitivo Relacionado à Quimioterapia/tratamento farmacológico , Cisplatino/efeitos adversos , Receptor A3 de Adenosina/metabolismo , Memória Espacial/efeitos dos fármacos , Agonistas do Receptor A3 de Adenosina/uso terapêutico , Animais , Feminino , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Dor/metabolismoRESUMO
Adropin is a highly-conserved peptide that has been shown to preserve endothelial barrier function. Blood-brain barrier (BBB) disruption is a key pathological event in cerebral ischemia. However, the effects of adropin on ischemic stroke outcomes remain unexplored. Hypothesizing that adropin exerts neuroprotective effects by maintaining BBB integrity, we investigated the role of adropin in stroke pathology utilizing loss- and gain-of-function genetic approaches combined with pharmacological treatment with synthetic adropin peptide. Long-term anatomical and functional outcomes were evaluated using histology, MRI, and a battery of sensorimotor and cognitive tests in mice subjected to ischemic stroke. Brain ischemia decreased endogenous adropin levels in the brain and plasma. Adropin treatment or transgenic adropin overexpression robustly reduced brain injury and improved long-term sensorimotor and cognitive function in young and aged mice subjected to ischemic stroke. In contrast, genetic deletion of adropin exacerbated ischemic brain injury, irrespective of sex. Mechanistically, adropin treatment reduced BBB damage, degradation of tight junction proteins, matrix metalloproteinase-9 activity, oxidative stress, and infiltration of neutrophils into the ischemic brain. Adropin significantly increased phosphorylation of endothelial nitric oxide synthase (eNOS), Akt, and ERK1/2. While adropin therapy was remarkably protective in wild-type mice, it failed to reduce brain injury in eNOS-deficient animals, suggesting that eNOS is required for the protective effects of adropin in stroke. These data provide the first causal evidence that adropin exerts neurovascular protection in stroke through an eNOS-dependent mechanism. We identify adropin as a novel neuroprotective peptide with the potential to improve stroke outcomes.
RESUMO
Obesity-related metabolic dysregulation causes mild cognitive impairment and increased risk for dementia. We used an LDLR-deficient C57BL/6J mouse model (LDLRKO) to investigate whether adropin, a neuropeptide linked to neurodegenerative diseases, improves cognitive function in situations of metabolic dysregulation. Adropin transgenic mice (AdrTG) were crossed with LDLRKO; male and female progeny were fed a high fat diet for 3-months. Male chow-fed wild type (WT) mice were used as controls. Diet-induced obesity and LDLR-deficiency caused severe dyslipidemia, irrespective of sex. The AdrTG prevented reduced adropin protein levels in LDLRKO cortex. In males, metabolic dysregulation and AdrTG genotype significantly and bi-directionally affected performance in the novel object recognition (NOR) test, a declarative hippocampal memory task (discrimination index mean ± SE for WT, 0.02 ± 0.088; LDLRKO, -0.115 ± 0.077; AdrTG;LDLRKO, 0.265 ± 0.078; genotype effect, p = 0.009; LDLRKO vs. AdrTG;LDLRKO, P < 0.05). A 2-way ANOVA (fixed variables: sex, AdrTG genotype) indicated a highly significant effect of AdrTG (P = 0.003). The impact of the diet-genotype interaction on the male mouse brain was investigated using RNA-seq. Gene-ontology analysis of transcripts showing fold-changes of>1.3 or <-1.3 (P < 0.05) indicated metabolic dysregulation affected gene networks involved in intercellular/neuronal signaling, immune processes, angiogenesis, and extracellular matrix organization. The AdrTG selectively attenuated the impact of metabolic dysregulation on intercellular/neuronal signaling pathways. Intercellular/neuronal signaling pathways were also the predominant processes overrepresented when directly comparing AdrTG;LDLRKO with LDRKO. In summary, adropin overexpression improves cognitive function in severe metabolic dysregulation through pathways related to cell-cell communication and neuronal processes, and independently of preventing inflammatory responses.
Assuntos
Dieta , Técnicas de Transferência de Genes , Peptídeos e Proteínas de Sinalização Intercelular/genética , Memória , Obesidade/psicologia , Receptores de LDL/genética , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologiaRESUMO
Somatostatin receptor-4 (SST4) is highly expressed in brain regions affiliated with learning and memory. SST4 agonist treatment may act to mitigate Alzheimer's disease (AD) pathology. An integrated approach to SST4 agonist lead optimization is presented herein. High affinity and selective agonists with biological efficacy were identified through iterative cycles of a structure-based design strategy encompassing computational methods, chemistry, and preclinical pharmacology. 1,2,4-Triazole derivatives of our previously reported hit (4) showed enhanced SST4 binding affinity, activity, and selectivity. Thirty-five compounds showed low nanomolar range SST4 binding affinity, 12 having a K i < 1 nM. These compounds showed >500-fold affinity for SST4 as compared to SST2A. SST4 activities were consistent with the respective SST4 binding affinities (EC50 < 10 nM for 34 compounds). Compound 208 (SST4 K i = 0.7 nM; EC50 = 2.5 nM; >600-fold selectivity over SST2A) display a favorable physiochemical profile, and was advanced to learning and memory behavior evaluations in the senescence accelerated mouse-prone 8 model of AD-related cognitive decline. Chronic administration enhanced learning with i.p. dosing (1 mg kg-1) compared to vehicle. Chronic administration enhanced memory with both i.p. (0.01, 0.1, 1 mg kg-1) and oral (0.01, 10 mg kg-1) dosing compared to vehicle. This study identified a novel series of SST4 agonists with high affinity, selectivity, and biological activity that may be useful in the treatment of AD.
RESUMO
The neural functions of adropin, a secreted peptide highly expressed in the brain, have not been investigated. In humans, adropin is highly expressed in astrocytes and peaks during critical postnatal periods of brain development. Gene enrichment analysis of transcripts correlating with adropin expression suggests processes relevant to aging-related neurodegenerative diseases that vary with age and dementia state, possibly indicating survivor bias. In people aged <40 y and 'old-old' (>75 y) diagnosed with dementia, adropin correlates positively with genes involved in mitochondrial processes. In the 'old-old' without dementia adropin expression correlates positively with morphogenesis and synapse function. Potent neurotrophic responses in primary cultured neurons are consistent with adropin supporting the development and function of neural networks. Adropin expression in the 'old-old' also correlates positively with protein markers of tau-related neuropathologies and inflammation, particularly in those without dementia. How variation in brain adropin expression affects neurological aging was investigated using old (18-month) C57BL/6J mice. In mice adropin is expressed in neurons, oligodendrocyte progenitor cells, oligodendrocytes, and microglia and shows correlative relationships with groups of genes involved in neurodegeneration and cellular metabolism. Increasing adropin expression using transgenesis improved spatial learning and memory, novel object recognition, resilience to exposure to new environments, and reduced mRNA markers of inflammation in old mice. Treatment with synthetic adropin peptide also reversed age-related declines in cognitive functions and affected expression of genes involved in morphogenesis and cellular metabolism. Collectively, these results establish a link between adropin expression and neural energy metabolism and indicate a potential therapy against neurological aging.
RESUMO
Background MR fingerprinting (MRF) provides rapid and simultaneous quantification of multiple tissue parameters in a single scan. Purpose To evaluate a rapid kidney MRF technique at 3.0 T in phantoms, healthy volunteers, and patients. Materials and Methods A 15-second kidney MRF acquisition was designed with 12 acquisition segments, a range of low flip angles (5°-12°), multiple magnetization preparation schema (T1, T2, and fat suppression), and an undersampled spiral trajectory. This technique was first validated in vitro using standardized T1 and T2 phantoms. Kidney T1 and T2 maps were then obtained for 10 healthy adult volunteers (mean age ± standard deviation, 35 years ± 13; six men) and three pediatric patients with autosomal recessive polycystic kidney disease (ARPKD) (mean age, 10 years ± 3; two boys) between August 2019 and October 2020 to evaluate the method in vivo. Results Results in nine phantoms showed good agreement with spin-echo-based T1 and T2 values (R2 > 0.99). In vivo MRF kidney T1 and T2 assessments in healthy adult volunteers (cortex: T1, 1362 msec ± 5; T2, 64 msec ± 5; medulla: T1, 1827 msec ± 94; T2, 69 msec ± 3) were consistent with values in the literature but with improved precision in comparison with prior MRF implementations. In vivo MRF-based kidney T1 and T2 values with and without B1 correction were in good agreement (R2 > 0.96, P < .001), demonstrating limited sensitivity to B1 field inhomogeneities. Additional MRF reconstructions using the first nine segments of the MRF profiles (11-second acquisition time) were in good agreement with the reconstructions using 12 segments (15-second acquisition time) (R2 > 0.87, P < .001). Repeat kidney MRF scans for the three patients with ARPKD on successive days also demonstrated good reproducibility (T1 and T2: <3% difference). Conclusion A kidney MR fingerprinting method provided in vivo kidney T1 and T2 maps at 3.0 T in a single breath hold with improved precision and no need for B1 correction. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Laustsen in this issue.
Assuntos
Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Rim Policístico Autossômico Recessivo/diagnóstico por imagem , Adulto , Suspensão da Respiração , Criança , Feminino , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Imagens de FantasmasRESUMO
BACKGROUND: Autosomal recessive polycystic kidney disease (ARPKD) is a rare but potentially lethal genetic disorder typically characterized by diffuse renal microcysts. Clinical trials for patients with ARPKD are not currently possible due to the absence of sensitive measures of ARPKD kidney disease progression and/or therapeutic efficacy. METHODS: In this study, animal and human magnetic resonance imaging (MRI) scanners were used to obtain quantitative kidney T1 and T2 relaxation time maps for both excised kidneys from bpk and wild-type (WT) mice as well as for a pediatric patient with ARPKD and a healthy adult volunteer. RESULTS: Mean kidney T1 and T2 relaxation times showed significant increases with age (p < 0.05) as well as significant increases in comparison to WT mice (p < 2 × 10-10). Significant or nearly significant linear correlations were observed for mean kidney T1 (p = 0.030) and T2 (p = 0.054) as a function of total kidney volume, respectively. Initial magnetic resonance fingerprinting assessments in a patient with ARPKD showed visible increases in both kidney T1 and T2 in comparison to the healthy volunteer. CONCLUSIONS: These preclinical and initial clinical MRI studies suggest that renal T1 and T2 relaxometry may provide an additional outcome measure to assess cystic kidney disease progression in patients with ARPKD. IMPACT: A major roadblock for implementing clinical trials in patients with ARPKD is the absence of sensitive measures of ARPKD kidney disease progression and/or therapeutic efficacy. A clinical need exists to develop a safe and sensitive measure for kidney disease progression, and eventually therapeutic efficacy, for patients with ARPKD. Mean kidney T1 and T2 MRI relaxation times showed significant increases with age (p < 0.05) as well as significant increases in comparison to WT mice (p < 2 ×10-10), indicating that T1 and T2 may provide sensitive assessments of cystic changes associated with progressive ARPKD kidney disease. This preclinical and initial clinical study suggests that MRI-based kidney T1 and T2 mapping could be used as a non-invasive assessment of ARPKD kidney disease progression. These non-invasive, quantitative MRI techniques could eventually be used as an outcome measure for clinical trials evaluating novel therapeutics aimed at limiting or preventing ARPKD kidney disease progression.
Assuntos
Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética , Rim Policístico Autossômico Recessivo/diagnóstico por imagem , Adolescente , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Rim Policístico Autossômico Recessivo/genética , Valor Preditivo dos TestesRESUMO
BACKGROUND: Traumatic brain injury (TBI) is a common pathological condition that presently lacks a specific pharmacological treatment. Adenosine levels rise following TBI, which is thought to be neuroprotective against secondary brain injury. Evidence from stroke and inflammatory disease models suggests that adenosine signaling through the G protein-coupled A3 adenosine receptor (A3AR) can provide antiinflammatory and neuroprotective effects. However, the role of A3AR in TBI has not been investigated. METHODS: Using the selective A3AR agonist, MRS5980, we evaluated the effects of A3AR activation on the pathological outcomes and cognitive function in CD1 male mouse models of TBI. RESULTS: When measured 24 h after controlled cortical impact (CCI) TBI, male mice treated with intraperitoneal injections of MRS5980 (1 mg/kg) had reduced secondary tissue injury and brain infarction than vehicle-treated mice with TBI. These effects were associated with attenuated neuroinflammation marked by reduced activation of nuclear factor of kappa light polypeptide gene enhancer in B cells (NFκB) and MAPK (p38 and extracellular signal-regulated kinase (ERK)) pathways and downstream NOD-like receptor pyrin domain-containing 3 inflammasome activation. MRS5980 also attenuated TBI-induced CD4+ and CD8+ T cell influx. Moreover, when measured 4-5 weeks after closed head weight-drop TBI, male mice treated with MRS5980 (1 mg/kg) performed significantly better in novel object-placement retention tests (NOPRT) and T maze trials than untreated mice with TBI without altered locomotor activity or increased anxiety. CONCLUSION: Our results provide support for the beneficial effects of small molecule A3AR agonists to mitigate secondary tissue injury and cognitive impairment following TBI.
Assuntos
Agonistas do Receptor A3 de Adenosina/administração & dosagem , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Transtornos Neurocognitivos/tratamento farmacológico , Transtornos Neurocognitivos/metabolismo , Receptor A3 de Adenosina/metabolismo , Animais , Lesões Encefálicas Traumáticas/patologia , Sistemas de Liberação de Medicamentos/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Neurocognitivos/patologiaRESUMO
The micropeptide adropin encoded by the clock-controlled energy homeostasis-associated gene is implicated in the regulation of glucose metabolism. However, its links to rhythms of nutrient intake, energy balance, and metabolic control remain poorly defined. Using surveys of Gene Expression Omnibus data sets, we confirm that fasting suppresses liver adropin expression in lean C57BL/6J (B6) mice. However, circadian rhythm data are inconsistent. In lean mice, caloric restriction (CR) induces bouts of compulsive binge feeding separated by prolonged fasting intervals, increasing NAD-dependent deacetylase sirtuin-1 signaling important for glucose and lipid metabolism regulation. CR up-regulates adropin expression and induces rhythms correlating with cellular stress-response pathways. Furthermore, adropin expression correlates positively with phosphoenolpyruvate carboxokinase-1 (Pck1) expression, suggesting a link with gluconeogenesis. Our previous data suggest that adropin suppresses gluconeogenesis in hepatocytes. Liver-specific adropin knockout (LAdrKO) mice exhibit increased glucose excursions following pyruvate injections, indicating increased gluconeogenesis. Gluconeogenesis is also increased in primary cultured hepatocytes derived from LAdrKO mice. Analysis of circulating insulin levels and liver expression of fasting-responsive cAMP-dependent protein kinase A (PKA) signaling pathways also suggests enhanced responses in LAdrKO mice during a glucagon tolerance test (250 µg/kg intraperitoneally). Fasting-associated changes in PKA signaling are attenuated in transgenic mice constitutively expressing adropin and in fasting mice treated acutely with adropin peptide. In summary, hepatic adropin expression is regulated by nutrient- and clock-dependent extrahepatic signals. CR induces pronounced postprandial peaks in hepatic adropin expression. Rhythms of hepatic adropin expression appear to link energy balance and cellular stress to the intracellular signal transduction pathways that drive the liver fasting response.