Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Front Immunol ; 13: 1007334, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36177035

RESUMO

Large double-stranded DNA viruses deploy multiple strategies to subvert host immune defenses. Some of these tactics are mediated by viral gene products acquired by horizontal gene transfer from the corresponding hosts and shaped throughout evolution. The programmed death-1 (PD-1) receptor and its ligands, PD-L1 and PD-L2, play a pivotal role attenuating T-cell responses and regulating immune tolerance. In this study, we report the first functional PD-L1 homolog gene (De2) found in a pathogen. De2, captured by a γ-herpesvirus from its host during co-evolution around 50 million years ago, encodes a cell-surface glycoprotein that interacts with high affinity and stability with host PD-1. We also find that mutations evolved by the viral protein result in a significant loss of its ability to interact in cis with CD80, an interaction that for PD-L1:CD80 has been reported to block PD-1 inhibitory pathways. Furthermore, we demonstrate that the viral protein strongly inhibits T-cell signaling. Our observations suggest that PD-L1 homologs may enable viruses to evade T cell responses, favor their replication, and prevent excessive tissue damage. Altogether, our findings reveal a novel viral immunosuppressive strategy and highlight the importance of the modulation of the PD-1/PD-L1 axis during viral infections.


Assuntos
Antígeno B7-H1 , Proteína 2 Ligante de Morte Celular Programada 1 , Antígeno B7-H1/metabolismo , DNA , Ligantes , Glicoproteínas de Membrana/metabolismo , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/genética , Proteínas Virais
2.
Viruses ; 12(8)2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731344

RESUMO

The genesis of gene families by the capture of host genes and their subsequent duplication is a crucial process in the evolution of large DNA viruses. CD48 is a cell surface molecule that interacts via its N-terminal immunoglobulin (Ig) domain with the cell surface receptor 2B4 (CD244), regulating leukocyte cytotoxicity. We previously reported the presence of five CD48 homologs (vCD48s) in two related cytomegaloviruses, and demonstrated that one of them, A43, binds 2B4 and acts as a soluble CD48 decoy receptor impairing NK cell function. Here, we have characterized the rest of these vCD48s. We show that they are highly glycosylated proteins that display remarkably distinct features: divergent biochemical properties, cellular locations, and temporal expression kinetics. In contrast to A43, none of them interacts with 2B4. Consistent with this, molecular modeling of the N-terminal Ig domains of these vCD48s evidences notable changes as compared to CD48, suggesting that they interact with alternative targets. Accordingly, we demonstrate that one of them, S30, tightly binds CD2, a crucial T- and NK-cell adhesion and costimulatory molecule. Thus, our findings show how a key host immune receptor gene captured by a virus can be subsequently remodeled to evolve new immunoevasins with altered binding properties.


Assuntos
Antígeno CD48/genética , Antígeno CD48/metabolismo , Citomegalovirus/genética , Receptores de Superfície Celular/metabolismo , Animais , Cercopithecidae/virologia , Citomegalovirus/imunologia , Células HEK293 , Humanos , Evasão da Resposta Imune , Ligantes , Modelos Moleculares , Ligação Proteica , Receptores Imunológicos/metabolismo , Saimiri/virologia , Homologia de Sequência , Linfócitos T/imunologia , Linfócitos T/virologia
3.
PLoS Pathog ; 15(4): e1007658, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30947296

RESUMO

Throughout evolution, cytomegaloviruses (CMVs) have been capturing genes from their hosts, employing the derived proteins to evade host immune defenses. We have recently reported the presence of a number of CD48 homologs (vCD48s) encoded by different pathogenic viruses, including several CMVs. However, their properties and biological relevance remain as yet unexplored. CD48, a cosignaling molecule expressed on the surface of most hematopoietic cells, modulates the function of natural killer (NK) and other cytotoxic cells by binding to its natural ligand 2B4 (CD244). Here, we have characterized A43, the vCD48 exhibiting the highest amino acid sequence identity with host CD48. A43, which is encoded by owl monkey CMV, is a soluble molecule released from the cell after being proteolytically processed through its membrane proximal region. A43 is expressed with immediate-early kinetics, yielding a protein that is rapidly detected in the supernatant of infected cells. Remarkably, surface plasmon resonance assays revealed that this viral protein binds to host 2B4 with high affinity and slow dissociation rates. We demonstrate that soluble A43 is capable to abrogate host CD48:2B4 interactions. Moreover, A43 strongly binds to human 2B4 and prevents 2B4-mediated NK-cell adhesion to target cells, therefore reducing the formation of conjugates and the establishment of immunological synapses between human NK cells and CD48-expressing target cells. Furthermore, in the presence of this viral protein, 2B4-mediated cytotoxicity and IFN-γ production by NK cells are severely impaired. In summary, we propose that A43 may serve as a functional soluble CD48 decoy receptor by binding and masking 2B4, thereby impeding effective NK cell immune control during viral infections. Thus, our findings provide a novel example of the immune evasion strategies developed by viruses.


Assuntos
Antígeno CD48/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Citotoxicidade Imunológica/imunologia , Células Matadoras Naturais/imunologia , Receptores Imunológicos/imunologia , Família de Moléculas de Sinalização da Ativação Linfocitária/imunologia , Antígeno CD48/metabolismo , Células Cultivadas , Infecções por Citomegalovirus/virologia , Humanos , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/virologia , Ativação Linfocitária , Receptores Imunológicos/metabolismo , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo
4.
J Virol ; 92(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29467314

RESUMO

Human cytomegalovirus (HCMV) persistence in infected individuals relies on a plethora of mechanisms to efficiently reduce host immune responses. To that end, HCMV uses a variety of gene products, some of which have not been identified yet. Here we characterized the UL8 gene, which consists of two exons, sharing the first with the HCMV RL11 family member UL7 UL8 is a transmembrane protein with an N-terminal immunoglobulin (Ig)-like domain in common with UL7 but with an extended stalk and a distinctive cytoplasmic tail. The UL8 open reading frame gives rise to a heavily glycosylated protein predominantly expressed on the cell surface, from where it can be partially endocytosed and subsequently degraded. Infections with UL8-tagged viruses indicated that UL8 was synthesized with late-phase kinetics. By virtue of its highly conserved Ig-like domain, this viral protein interacted with a surface molecule present on activated neutrophils. Notably, when ectopically expressed in THP-1 myeloid cells, UL8 was able to significantly reduce the production of a variety of proinflammatory cytokines. Mutations in UL8 indicated that this functional effect was mediated by the cell surface expression of its Ig-like domain. To investigate the impact of the viral protein in the infection context, we engineered HCMVs lacking the UL8 gene and demonstrated that UL8 decreases the release of a large number of proinflammatory factors at late times after infection of THP-1 cells. Our data indicate that UL8 may exert an immunosuppressive role key for HCMV survival in the host.IMPORTANCE HCMV is a major pathogen that causes life-threatening diseases and disabilities in infected newborns and immunocompromised individuals. Containing one of the largest genomes among all reported human viruses, HCMV encodes an impressive repertoire of gene products. However, the functions of a large proportion of them still remain unknown, a fact that complicates the design of new therapeutic approaches to prevent or treat HCMV-associated diseases. In this report, we have conducted an extensive study of UL8, one of the previously uncharacterized HCMV open reading frames. We found that the UL8 protein is expressed at late times postinfection and utilized by HCMV to reduce the production of proinflammatory factors by infected myeloid cells. Thus, the work presented here points to a key role of UL8 as a novel HCMV immune modulator capable of restraining host antiviral defenses.


Assuntos
Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Glicoproteínas/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/imunologia , Células Mieloides/imunologia , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Citocinas/metabolismo , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , Glicoproteínas/genética , Humanos , Inflamação/metabolismo , Inflamação/virologia , Células Mieloides/metabolismo , Transdução de Sinais , Proteínas Virais/genética , Replicação Viral
5.
Front Immunol ; 8: 1317, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29114247

RESUMO

Human cytomegalovirus (HCMV) infection promotes the differentiation and persistent expansion of a mature NK cell subset, which displays high surface levels of the activating CD94/NKG2C NK cell receptor, together with additional distinctive phenotypic and functional features. The mechanisms underlying the development of adaptive NK cells remain uncertain but some observations support the involvement of a cognate interaction of CD94/NKG2C with ligand(s) displayed by HCMV-infected cells. To approach this issue, the heterodimer and its adaptor (DAP12) were expressed in the human Jurkat leukemia T cell line; signaling was detected by transfection of a reporter plasmid encoding for Luciferase (Luc) under NFAT/AP1-dependent control. Engagement of the receptor by solid-phase bound CD94- or NKG2C-specific monoclonal antibodies (mAbs) triggered Luc expression. Moreover, reporter activation was detectable upon interaction with HLA-E+ 721.221 (.221-AEH) cells, as well as with 721.221 cells incubated with synthetic peptides, which stabilized surface expression of endogenous HLA-E; the response was specifically antagonized by soluble NKG2C- and HLA-E-specific mAbs. By contrast, activation of Jurkat-NKG2C+ was undetectable upon interaction with Human Fetal Foreskin Fibroblasts (HFFF) infected with HCMV laboratory strains (i.e., AD169, Towne), regardless of their differential ability to preserve surface HLA-E expression. On the other hand, infection with two clinical isolates or with the endotheliotropic TB40/E strain triggered Jurkat-NKG2C+ activation; yet, this response was not inhibited by blocking mAbs and was independent of CD94/NKG2C expression. The results are discussed in the framework of previous observations supporting the hypothetical existence of specific ligand(s) for CD94/NKG2C in HCMV-infected cells.

6.
Eur J Immunol ; 47(5): 780-796, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28383780

RESUMO

Pathogens have developed a plethora of strategies to undermine host immune defenses in order to guarantee their survival. For large DNA viruses, these immune evasion mechanisms frequently rely on the expression of genes acquired from host genomes. Horizontally transferred genes include members of the immunoglobulin superfamily, whose products constitute the most diverse group of proteins of vertebrate genomes. Their promiscuous immunoglobulin domains, which comprise the building blocks of these molecules, are involved in a large variety of functions mediated by ligand-binding interactions. The flexible structural nature of the immunoglobulin domains makes them appealing targets for viral capture due to their capacity to generate high functional diversity. Here, we present an up-to-date review of immunoglobulin superfamily gene homologs encoded by herpesviruses, poxviruses, and adenoviruses, that include CD200, CD47, Fc receptors, interleukin-1 receptor 2, interleukin-18 binding protein, CD80, carcinoembryonic antigen-related cell adhesion molecules, and signaling lymphocyte activation molecules. We discuss their distinct structural attributes, binding properties, and functions, shaped by evolutionary pressures to disarm specific immune pathways. We include several novel genes identified from extensive genome database surveys. An understanding of the properties and modes of action of these viral proteins may guide the development of novel immune-modulatory therapeutic tools.


Assuntos
Vírus de DNA/genética , Vírus de DNA/patogenicidade , Evasão da Resposta Imune , Imunoglobulinas/imunologia , Proteínas Virais/imunologia , Adenovírus Humanos/genética , Adenovírus Humanos/imunologia , Adenovírus Humanos/patogenicidade , Animais , Antígenos CD/imunologia , Vírus de DNA/imunologia , Evolução Molecular , Transferência Genética Horizontal , Genes de Imunoglobulinas , Herpesviridae/genética , Herpesviridae/imunologia , Herpesviridae/patogenicidade , Humanos , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Proteínas Virais/genética
7.
PLoS One ; 11(12): e0169196, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28033411

RESUMO

Since the discovery of the high abundance of Alu elements in the human genome, the interest for the functional significance of these retrotransposons has been increasing. Primate Alu and rodent Alu-like elements are retrotransposed by a mechanism driven by the LINE1 (L1) encoded proteins, the same machinery that generates the L1 repeats, the processed pseudogenes (PPs), and other retroelements. Apart from free Alu RNAs, Alus are also transcribed and retrotranscribed as part of cellular gene transcripts, generally embedded inside 3' untranslated regions (UTRs). Despite different proposed hypotheses, the functional implication of the presence of Alus inside 3'UTRs remains elusive. In this study we hypothesized that Alu elements in 3'UTRs could be involved in the genesis of PPs. By analyzing human genome data we discovered that the existence of 3'UTR-embedded Alu elements is overrepresented in genes source of PPs. In contrast, the presence of other retrotransposable elements in 3'UTRs does not show this PP linked overrepresentation. This research was extended to mouse and rat genomes and the results accordingly reveal overrepresentation of 3'UTR-embedded B1 (Alu-like) elements in PP parent genes. Interestingly, we also demonstrated that the overrepresentation of 3'UTR-embedded Alus is particularly significant in PP parent genes with low germline gene expression level. Finally, we provide data that support the hypothesis that the L1 machinery is also the system that herpesviruses, and possibly other large DNA viruses, use to capture host genes expressed in germline or somatic cells. Altogether our results suggest a novel role for Alu or Alu-like elements inside 3'UTRs as facilitators of the genesis of PPs, particularly in lowly expressed genes. Moreover, we propose that this L1-driven mechanism, aided by the presence of 3'UTR-embedded Alus, may also be exploited by DNA viruses to incorporate host genes to their viral genomes.


Assuntos
Regiões 3' não Traduzidas/genética , Elementos Alu/genética , Genoma Viral/genética , Interações Hospedeiro-Patógeno/genética , Pseudogenes/genética , Animais , Herpesviridae/genética , Herpesviridae/fisiologia , Humanos , Camundongos , Ratos
8.
J Virol ; 89(22): 11323-36, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26339044

RESUMO

UNLABELLED: Throughout evolution, large DNA viruses have been usurping genes from their hosts to equip themselves with proteins that restrain host immune defenses. Signaling lymphocytic activation molecule (SLAM) family (SLAMF) receptors are involved in the regulation of both innate and adaptive immunity, which occurs upon engagement with their ligands via homotypic or heterotypic interactions. Here we report a total of seven SLAMF genes encoded by the genomes of two cytomegalovirus (CMV) species, squirrel monkey CMV (SMCMV) and owl monkey CMV (OMCMV), that infect New World monkeys. Our results indicate that host genes were captured by retrotranscription at different stages of the CMV-host coevolution. The most recent acquisition led to S1 in SMCMV. S1 is a SLAMF6 homolog with an amino acid sequence identity of 97% to SLAMF6 in its ligand-binding N-terminal Ig domain. We demonstrate that S1 is a cell surface glycoprotein capable of binding to host SLAMF6. Furthermore, the OMCMV genome encodes A33, an LY9 (SLAMF3) homolog, and A43, a CD48 (SLAMF2) homolog, two soluble glycoproteins which recognize their respective cellular counterreceptors and thus are likely to be viral SLAMF decoy receptors. In addition, distinct copies of further divergent CD48 homologs were found to be encoded by both CMV genomes. Remarkably, all these molecules display a number of unique features, including cytoplasmic tails lacking characteristic SLAMF signaling motifs. Taken together, our findings indicate a novel immune evasion mechanism in which incorporation of host SLAMF receptors that retain their ligand-binding properties enables viruses to interfere with SLAMF functions and to supply themselves with convenient structural molds for expanding their immunomodulatory repertoires. IMPORTANCE: The way in which viruses shape their genomes under the continual selective pressure exerted by the host immune system is central for their survival. Here, we report that New World monkey cytomegaloviruses have broadly captured and duplicated immune cell receptors of the signaling lymphocyte activation molecule (SLAM) family during host-virus coevolution. Notably, we demonstrate that several of these viral SLAMs exhibit exceptional preservation of their N-terminal immunoglobulin domains, which results in maintenance of their ligand-binding capacities. At the same time, these molecules present distinctive structural properties which include soluble forms and the absence of typical SLAM signaling motifs in their cytoplasmic domains, likely reflecting the evolutionary adaptation undergone to efficiently interfere with host SLAM family activities. The observation that the genomes of other large DNA viruses might bear SLAM family homologs further underscores the importance of these molecules as a novel class of immune regulators and as convenient scaffolds for viral evolution.


Assuntos
Antígenos CD/imunologia , Aotidae/virologia , Citomegalovirus/imunologia , Ativação Linfocitária/imunologia , Receptores de Superfície Celular/imunologia , Saimiri/virologia , Sequência de Aminoácidos , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígeno CD48 , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/veterinária , Infecções por Citomegalovirus/virologia , Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Linfócitos/imunologia , Glicoproteínas de Membrana/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/imunologia , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária
9.
PLoS Pathog ; 10(3): e1004000, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24626474

RESUMO

Receptors of the signalling lymphocyte-activation molecules (SLAM) family are involved in the functional regulation of a variety of immune cells upon engagement through homotypic or heterotypic interactions amongst them. Here we show that murine cytomegalovirus (MCMV) dampens the surface expression of several SLAM receptors during the course of the infection of macrophages. By screening a panel of MCMV deletion mutants, we identified m154 as an immunoevasin that effectively reduces the cell-surface expression of the SLAM family member CD48, a high-affinity ligand for natural killer (NK) and cytotoxic T cell receptor CD244. m154 is a mucin-like protein, expressed with early kinetics, which can be found at the cell surface of the infected cell. During infection, m154 leads to proteolytic degradation of CD48. This viral protein interferes with the NK cell cytotoxicity triggered by MCMV-infected macrophages. In addition, we demonstrate that an MCMV mutant virus lacking m154 expression results in an attenuated phenotype in vivo, which can be substantially restored after NK cell depletion in mice. This is the first description of a viral gene capable of downregulating CD48. Our novel findings define m154 as an important player in MCMV innate immune regulation.


Assuntos
Antígenos CD/imunologia , Infecções por Citomegalovirus/imunologia , Evasão da Resposta Imune/imunologia , Muromegalovirus/imunologia , Proteínas Virais/imunologia , Animais , Western Blotting , Antígeno CD48 , Feminino , Citometria de Fluxo , Imunoprecipitação , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
PLoS One ; 9(1): e85539, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465593

RESUMO

Recently there has been much interest in the Regulators of Calcineurin (RCAN) proteins which are important endogenous modulators of the calcineurin-NFATc signalling pathway. They have been shown to have a crucial role in cellular programmes such as the immune response, muscle fibre remodelling and memory, but also in pathological processes such as cardiac hypertrophy and neurodegenerative diseases. In vertebrates, the RCAN family form a functional subfamily of three members RCAN1, RCAN2 and RCAN3 whereas only one RCAN is present in the rest of Eukarya. In addition, RCAN genes have been shown to collocate with RUNX and CLIC genes in ACD clusters (ACD21, ACD6 and ACD1). How the RCAN genes and their clustering in ACDs evolved is still unknown. After analysing RCAN gene family evolution using bioinformatic tools, we propose that the three RCAN vertebrate genes within the ACD clusters, which evolved from single copy genes present in invertebrates and lower eukaryotes, are the result of two rounds of whole genome duplication, followed by a segmental duplication. This evolutionary scenario involves the loss or gain of some RCAN genes during evolution. In addition, we have analysed RCAN gene structure and identified the existence of several characteristic features that can be involved in RCAN evolution and gene expression regulation. These included: several transposable elements, CpG islands in the 5' region of the genes, the existence of antisense transcripts (NAT) associated with the three human genes, and considerable evidence for bidirectional promoters that regulate RCAN gene expression. Furthermore, we show that the CpG island associated with the RCAN3 gene promoter is unmethylated and transcriptionally active. All these results provide timely new insights into the molecular mechanisms underlying RCAN function and a more in depth knowledge of this gene family whose members are obvious candidates for the development of future therapies.


Assuntos
Evolução Biológica , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Musculares/genética , Animais , Mapeamento Cromossômico , Proteínas de Ligação a DNA , Genoma , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Musculares/metabolismo , Vertebrados/genética
11.
Mol Biol Evol ; 27(2): 325-35, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19822635

RESUMO

Gene duplication is a major mechanism for molecular evolutionary innovation. Young gene duplicates typically exhibit elevated rates of protein evolution and, according to a number of recent studies, increased expression divergence. However, the nature of these changes is still poorly understood. To gain novel insights into the functional consequences of gene duplication, we have undertaken an in-depth analysis of a large data set of gene families containing primate- and/or rodent-specific gene duplicates. We have found a clear tendency toward an increase in protein, promoter, and expression divergence with increasing number of duplication events undergone by each gene since the human-mouse split. In addition, gene duplication is significantly associated with a reduction in expression breadth and intensity. Interestingly, it is possible to identify three main groups regarding the evolution of gene expression following gene duplication. The first group, which comprises around 25% of the families, shows patterns compatible with tissue-expression partitioning. The second and largest group, comprising 33-53% of the families, shows broad expression of one of the gene copies and reduced, overlapping, expression of the other copy or copies. This can be attributed, in most cases, to loss of expression in several tissues of one or more gene copies. Finally, a substantial number of families, 19-35%, maintain a very high level of tissue-expression overlap (>0.8) after tens of millions of years of evolution. These families may have been subject to selection for increased gene dosage.


Assuntos
Evolução Molecular , Duplicação Gênica , Mamíferos/genética , Animais , Humanos , Modelos Genéticos
12.
BMC Genomics ; 8: 459, 2007 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-18078513

RESUMO

BACKGROUND: The arrangement of regulatory motifs in gene promoters, or promoter architecture, is the result of mutation and selection processes that have operated over many millions of years. In mammals, tissue-specific transcriptional regulation is related to the presence of specific protein-interacting DNA motifs in gene promoters. However, little is known about the relative location and spacing of these motifs. To fill this gap, we have performed a systematic search for motifs that show significant bias at specific promoter locations in a large collection of housekeeping and tissue-specific genes. RESULTS: We observe that promoters driving housekeeping gene expression are enriched in particular motifs with strong positional bias, such as YY1, which are of little relevance in promoters driving tissue-specific expression. We also identify a large number of motifs that show positional bias in genes expressed in a highly tissue-specific manner. They include well-known tissue-specific motifs, such as HNF1 and HNF4 motifs in liver, kidney and small intestine, or RFX motifs in testis, as well as many potentially novel regulatory motifs. Based on this analysis, we provide predictions for 559 tissue-specific motifs in mouse gene promoters. CONCLUSION: The study shows that motif positional bias is an important feature of mammalian proximal promoters and that it affects both general and tissue-specific motifs. Motif positional constraints define very distinct promoter architectures depending on breadth of expression and type of tissue.


Assuntos
Regulação da Expressão Gênica/genética , Especificidade de Órgãos/genética , Regiões Promotoras Genéticas/genética , Animais , Bases de Dados de Ácidos Nucleicos , Camundongos , Software , Fatores de Transcrição/metabolismo
13.
Genome Biol ; 8(7): R140, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17626644

RESUMO

BACKGROUND: Understanding the constraints that operate in mammalian gene promoter sequences is of key importance to understand the evolution of gene regulatory networks. The level of promoter conservation varies greatly across orthologous genes, denoting differences in the strength of the evolutionary constraints. Here we test the hypothesis that the number of tissues in which a gene is expressed is related in a significant manner to the extent of promoter sequence conservation. RESULTS: We show that mammalian housekeeping genes, expressed in all or nearly all tissues, show significantly lower promoter sequence conservation, especially upstream of position -500 with respect to the transcription start site, than genes expressed in a subset of tissues. In addition, we evaluate the effect of gene function, CpG island content and protein evolutionary rate on promoter sequence conservation. Finally, we identify a subset of transcription factors that bind to motifs that are specifically over-represented in housekeeping gene promoters. CONCLUSION: This is the first report that shows that the promoters of housekeeping genes show reduced sequence conservation with respect to genes expressed in a more tissue-restricted manner. This is likely to be related to simpler gene expression, requiring a smaller number of functional cis-regulatory motifs.


Assuntos
Ilhas de CpG , Regiões Promotoras Genéticas , Animais , Sequência de Bases , Sequência Conservada , Evolução Molecular , Expressão Gênica , Variação Genética , Humanos , Camundongos , Dados de Sequência Molecular
14.
Bioinformatics ; 23(2): 243-4, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17098773

RESUMO

UNLABELLED: Many DNA functional motifs tend to accumulate or cluster at specific gene locations. These locations can be detected, in a group of gene sequences, as high frequency 'peaks' with respect to a reference position, such as the transcription start site (TSS). We have developed a web tool for the identification of regions containing significant motif peaks. We show, by using different yeast gene datasets, that peak regions are strongly enriched in experimentally-validated motifs and contain potentially important novel motifs. AVAILABILITY: http://genomics.imim.es/peaks


Assuntos
Algoritmos , Mapeamento Cromossômico/métodos , DNA/genética , Sequências Reguladoras de Ácido Nucleico/genética , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Software , Sequência de Bases , Dados de Sequência Molecular , Reconhecimento Automatizado de Padrão/métodos , Ativação Transcricional/genética
15.
Nucleic Acids Res ; 34(Database issue): D63-7, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16381947

RESUMO

Information about the genomic coordinates and the sequence of experimentally identified transcription factor binding sites is found scattered under a variety of diverse formats. The availability of standard collections of such high-quality data is important to design, evaluate and improve novel computational approaches to identify binding motifs on promoter sequences from related genes. ABS (http://genome.imim.es/datasets/abs2005/index.html) is a public database of known binding sites identified in promoters of orthologous vertebrate genes that have been manually curated from bibliography. We have annotated 650 experimental binding sites from 68 transcription factors and 100 orthologous target genes in human, mouse, rat or chicken genome sequences. Computational predictions and promoter alignment information are also provided for each entry. A simple and easy-to-use web interface facilitates data retrieval allowing different views of the information. In addition, the release 1.0 of ABS includes a customizable generator of artificial datasets based on the known sites contained in the collection and an evaluation tool to aid during the training and the assessment of motif-finding programs.


Assuntos
Bases de Dados de Ácidos Nucleicos , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Galinhas/genética , Genômica , Humanos , Internet , Camundongos , Ratos , Interface Usuário-Computador
16.
Nucleic Acids Res ; 31(13): 3651-3, 2003 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12824386

RESUMO

In this paper we present several web-based tools to identify conserved patterns in sequences. In particular we present details on the functionality of PROMO version 2.0, a program for the prediction of transcription factor binding site in a single sequence or in a group of related sequences and, of MALGEN, a tool to visualize sequence correspondences among long DNA sequences. The web tools and associated documentation can be accessed at http://www.lsi.upc.es/~alggen (RESEARCH link).


Assuntos
Sequências Reguladoras de Ácido Nucleico , Análise de Sequência de DNA/métodos , Software , Animais , Sítios de Ligação , Gráficos por Computador , Sequência Conservada , Genoma , Humanos , Internet , Alinhamento de Sequência , Fatores de Transcrição
17.
Bioinformatics ; 18(2): 333-4, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11847087

RESUMO

We have developed a set of tools to construct positional weight matrices from known transcription factor binding sites in a species or taxon-specific manner, and to search for matches in DNA sequences.


Assuntos
DNA/genética , DNA/metabolismo , Software , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação/genética , Biologia Computacional , Humanos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA