Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 678, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755031

RESUMO

The electronic correlations (e.g. unconventional superconductivity (SC), chiral charge order and nematic order) and giant anomalous Hall effect (AHE) in topological kagome metals AV3Sb5 (A = K, Rb, and Cs) have attracted great interest. Electrical control of those correlated electronic states and AHE allows us to resolve their own nature and origin and to discover new quantum phenomena. Here, we show that electrically controlled proton intercalation has significant impacts on striking quantum phenomena in CsV3Sb5 nanodevices mainly through inducing disorders in thinner nanoflakes and carrier density modulation in thicker ones. Specifically, in disordered thin nanoflakes (below 25 nm), we achieve a quantum phase transition from a superconductor to a "failed insulator" with a large saturated sheet resistance for T → 0 K. Meanwhile, the carrier density modulation in thicker nanoflakes shifts the Fermi level across the charge density wave (CDW) gap and gives rise to an extrinsic-intrinsic transition of AHE. With the first-principles calculations, the extrinsic skew scattering of holes in the nearly flat bands with finite Berry curvature by multiple impurities would account for the giant AHE. Our work uncovers a distinct disorder-driven bosonic superconductor-insulator transition (SIT), outlines a global picture of the giant AHE and reveals its correlation with the unconventional CDW in the AV3Sb5 family.

2.
Nano Lett ; 22(15): 6166-6172, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35912475

RESUMO

Manipulating the exchange bias (EB) effect using an electronic gate is a significant goal in spintronics. The emergence of van der Waals (vdW) magnetic heterostructures has provided improved means to study interlayer magnetic coupling, but to date, these heterostructures have not exhibited electrical gate-controlled EB effects. Here, we report electrically controllable EB effects in a vdW heterostructure, FePS3-Fe5GeTe2. By applying a solid protonic gate, the EB effects were repeatably electrically tuned. The EB field reaches up to 23% of the coercivity and the blocking temperature ranges from 30 to 60 K under various gate-voltages. The proton intercalations not only tune the average magnetic exchange coupling but also change the antiferromagnetic configurations in the FePS3 layer. These result in a dramatic modulation of the total interface exchange coupling and the resultant EB effects. The study is a significant step toward vdW heterostructure-based magnetic logic for future low-energy electronics.

3.
Nano Lett ; 21(21): 9005-9011, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34694117

RESUMO

Monolayer WTe2 is predicted to be a quantum spin Hall insulator (QSHI), and its quantized edge transport has recently been demonstrated. However, one of the essential properties of a QSHI, spin-momentum locking of the helical edge states, has yet to be experimentally validated. Here, we measure and observe gate-controlled anisotropic magnetoresistance (AMR) in monolayer WTe2 devices. Electrically tuning the Fermi energy into the band gap, a large in-plane AMR is observed and the minimum of the in-plane AMR occurs when the applied magnetic field is perpendicular to the current direction. In line with the experimental observations, the theoretical predictions based on the band structure of monolayer WTe2 demonstrate that the AMR effect originates from spin-momentum locking in the helical edge states of monolayer WTe2. Our findings reveal that the spin quantization axis of the helical edge states in monolayer WTe2 can be precisely determined from AMR measurements.

4.
Nat Commun ; 12(1): 3639, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131134

RESUMO

Dzyaloshinskii-Moriya interaction (DMI) is vital to form various chiral spin textures, novel behaviors of magnons and permits their potential applications in energy-efficient spintronic devices. Here, we realize a sizable bulk DMI in a transition metal dichalcogenide (TMD) 2H-TaS2 by intercalating Fe atoms, which form the chiral supercells with broken spatial inversion symmetry and also act as the source of magnetic orderings. Using a newly developed protonic gate technology, gate-controlled protons intercalation could further change the carrier density and intensely tune DMI via the Ruderman-Kittel-Kasuya-Yosida mechanism. The resultant giant topological Hall resistivity [Formula: see text] of [Formula: see text] at [Formula: see text] (about [Formula: see text] larger than the zero-bias value) is larger than most known chiral magnets. Theoretical analysis indicates that such a large topological Hall effect originates from the two-dimensional Bloch-type chiral spin textures stabilized by DMI, while the large anomalous Hall effect comes from the gapped Dirac nodal lines by spin-orbit interaction. Dual-intercalation in 2H-TaS2 provides a model system to reveal the nature of DMI in the large family of TMDs and a promising way of gate tuning of DMI, which further enables an electrical control of the chiral spin textures and related electromagnetic phenomena.

5.
Phys Rev Lett ; 125(4): 047202, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32794802

RESUMO

The weak interlayer coupling in van der Waals (vdW) magnets has confined their application to two dimensional (2D) spintronic devices. Here, we demonstrate that the interlayer coupling in a vdW magnet Fe_{3}GeTe_{2} (FGT) can be largely modulated by a protonic gate. With the increase of the protons intercalated among vdW layers, interlayer magnetic coupling increases. Because of the existence of antiferromagnetic layers in FGT nanoflakes, the increasing interlayer magnetic coupling induces exchange bias in protonated FGT nanoflakes. Most strikingly, a rarely seen zero-field cooled (ZFC) exchange bias with very large values (maximally up to 1.2 kOe) has been observed when higher positive voltages (V_{g}≥4.36 V) are applied to the protonic gate, which clearly demonstrates that a strong interlayer coupling is realized by proton intercalation. Such strong interlayer coupling will enable a wider range of applications for vdW magnets.

6.
Sci Adv ; 5(7): eaaw0409, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31281884

RESUMO

With no requirements for lattice matching, van der Waals (vdW) ferromagnetic materials are rapidly establishing themselves as effective building blocks for next-generation spintronic devices. We report a hitherto rarely seen antisymmetric magnetoresistance (MR) effect in vdW heterostructured Fe3GeTe2 (FGT)/graphite/FGT devices. Unlike conventional giant MR (GMR), which is characterized by two resistance states, the MR in these vdW heterostructures features distinct high-, intermediate-, and low-resistance states. This unique characteristic is suggestive of underlying physical mechanisms that differ from those observed before. After theoretical calculations, the three-resistance behavior was attributed to a spin momentum locking induced spin-polarized current at the graphite/FGT interface. Our work reveals that ferromagnetic heterostructures assembled from vdW materials can exhibit substantially different properties to those exhibited by similar heterostructures grown in vacuum. Hence, it highlights the potential for new physics and new spintronic applications to be discovered using vdW heterostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA