Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
NPJ Parkinsons Dis ; 10(1): 44, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413607

RESUMO

Genome wide association studies (GWAS) have identified a number of genomic loci that are associated with Parkinson's disease (PD) risk. However, the majority of these variants lie in non-coding regions, and thus the mechanisms by which they influence disease development, and/or potential subtypes, remain largely elusive. To address this, we used a massively parallel reporter assay (MPRA) to screen the regulatory function of 5254 variants that have a known or putative connection to PD. We identified 138 loci with enhancer activity, of which 27 exhibited allele-specific regulatory activity in HEK293 cells. The identified regulatory variant(s) typically did not match the original tag variant within the PD associated locus, supporting the need for deeper exploration of these loci. The existence of allele specific transcriptional impacts within HEK293 cells, confirms that at least a subset of the PD associated regions mark functional gene regulatory elements. Future functional studies that confirm the putative targets of the empirically verified regulatory variants will be crucial for gaining a greater understanding of how gene regulatory network(s) modulate PD risk.

2.
NPJ Parkinsons Dis ; 8(1): 45, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440633

RESUMO

Parkinson's disease (PD) research has largely focused on the disease as a single entity centred on the development of neuronal pathology within the central nervous system. However, there is growing recognition that PD is not a single entity but instead reflects multiple diseases, in which different combinations of environmental, genetic and potential comorbid factors interact to direct individual disease trajectories. Moreover, an increasing body of recent research implicates peripheral tissues and non-neuronal cell types in the development of PD. These observations are consistent with the hypothesis that the initial causative changes for PD development need not occur in the central nervous system. Here, we discuss how the use of neuronal pathology as a shared, qualitative phenotype minimises insights into the possibility of multiple origins and aetiologies of PD. Furthermore, we discuss how considering PD as a single entity potentially impairs our understanding of the causative molecular mechanisms, approaches for patient stratification, identification of biomarkers, and the development of therapeutic approaches to PD. The clear consequence of there being distinct diseases that collectively form PD, is that there is no single biomarker or treatment for PD development or progression. We propose that diagnosis should shift away from the clinical definitions, towards biologically defined diseases that collectively form PD, to enable informative patient stratification. N-of-one type, clinical designs offer an unbiased, and agnostic approach to re-defining PD in terms of a group of many individual diseases.

3.
Brain ; 145(7): 2422-2435, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35094046

RESUMO

The latest meta-analysis of genome-wide association studies identified 90 independent variants across 78 genomic regions associated with Parkinson's disease, yet the mechanisms by which these variants influence the development of the disease remains largely elusive. To establish the functional gene regulatory networks associated with Parkinson's disease risk variants, we utilized an approach combining spatial (chromosomal conformation capture) and functional (expression quantitative trait loci) data. We identified 518 genes subject to regulation by 76 Parkinson's variants across 49 tissues, whicih encompass 36 peripheral and 13 CNS tissues. Notably, one-third of these genes were regulated via trans-acting mechanisms (distal; risk locus-gene separated by >1 Mb, or on different chromosomes). Of particular interest is the identification of a novel trans-expression quantitative trait loci-gene connection between rs10847864 and SYNJ1 in the adult brain cortex, highlighting a convergence between familial studies and Parkinson's disease genome-wide association studies loci for SYNJ1 (PARK20) for the first time. Furthermore, we identified 16 neurodevelopment-specific expression quantitative trait loci-gene regulatory connections within the foetal cortex, consistent with hypotheses suggesting a neurodevelopmental involvement in the pathogenesis of Parkinson's disease. Through utilizing Louvain clustering we extracted nine significant and highly intraconnected clusters within the entire gene regulatory network. The nine clusters are enriched for specific biological processes and pathways, some of which have not previously been associated with Parkinson's disease. Together, our results not only contribute to an overall understanding of the mechanisms and impact of specific combinations of Parkinson's disease variants, but also highlight the potential impact gene regulatory networks may have when elucidating aetiological subtypes of Parkinson's disease.


Assuntos
Estudo de Associação Genômica Ampla , Doença de Parkinson , Adulto , Redes Reguladoras de Genes/genética , Predisposição Genética para Doença/genética , Genômica , Humanos , Doença de Parkinson/genética
4.
Front Genet ; 12: 785436, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047012

RESUMO

Parkinson's disease (PD) is a complex neurodegenerative disease with a range of causes and clinical presentations. Over 76 genetic loci (comprising 90 SNPs) have been associated with PD by the most recent GWAS meta-analysis. Most of these PD-associated variants are located in non-coding regions of the genome and it is difficult to understand what they are doing and how they contribute to the aetiology of PD. We hypothesised that PD-associated genetic variants modulate disease risk through tissue-specific expression quantitative trait loci (eQTL) effects. We developed and validated a machine learning approach that integrated tissue-specific eQTL data on known PD-associated genetic variants with PD case and control genotypes from the Wellcome Trust Case Control Consortium. In so doing, our analysis ranked the tissue-specific transcription effects for PD-associated genetic variants and estimated their relative contributions to PD risk. We identified roles for SNPs that are connected with INPP5P, CNTN1, GBA and SNCA in PD. Ranking the variants and tissue-specific eQTL effects contributing most to the machine learning model suggested a key role in the risk of developing PD for two variants (rs7617877 and rs6808178) and eQTL associated transcriptional changes of EAF1-AS1 within the heart atrial appendage. Similarly, effects associated with eQTLs located within the Brain Cerebellum were also recognized to confer major PD risk. These findings were replicated in two additional, independent cohorts (the UK Biobank, and NeuroX) and thus warrant further mechanistic investigations to determine if these transcriptional changes could act as early contributors to PD risk and disease development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA