Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem B ; 126(21): 3897-3907, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35584210

RESUMO

The nature of linear photophysical and nonlinear optical properties of a new squaraine derivative 2,4-bis[4-(azetidyl)-2-hydroxyphenyl]squaraine (1) with efficient near-infrared (NIR) emission was comprehensively analyzed based on spectroscopic, photochemical, and two-photon absorption (2PA) measurements, along with quantum chemical analysis. The steady-state absorption, fluorescence, and excitation anisotropy spectra of 1 and its fluorescence emission lifetimes revealed the multiple aspects of the electronic structure of 1, including the relative orientations of the main transition dipoles, effective rotational volumes in solvents of different polarities, and a maximum molar extinction of 1.35 × 10-5 M-1·cm-1, which is unusually small for similar symmetric squaraines. The degenerate 2PA spectrum of 1 was obtained over a broad spectral range under femtosecond excitation, using standard open-aperture Z-scan and two-photon induced fluorescence methods, revealing maximum 2PA cross sections of ∼400 GM. Squaraine 1 exhibited efficient superluminescence emission in the polar solvent (dichloromethane) at room temperature under femtosecond pumping conditions. Quantum chemical analysis of the electronic structure of 1 was performed using the DFT/TD-DFT level of theory and found to be in good agreement with experimental data. The new squaraine derivative 1 displayed high fluorescence quantum yield, efficient NIR superluminescence, large 2PA cross sections, and high photostability with a photodecomposition quantum yield ∼4 × 10-6, suggesting its potential for applications in two-photon fluorescent bioimaging and lasing.


Assuntos
Ciclobutanos , Corantes Fluorescentes , Ciclobutanos/química , Corantes Fluorescentes/química , Fenóis/química , Fótons , Solventes/química
2.
Opt Lett ; 47(7): 1630-1633, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35363695

RESUMO

Space-time (ST) wave packets are a class of pulsed optical beams whose spatiotemporal spectral structure results in propagation invariance, tunable group velocity, and anomalous refractive phenomena. Here, we investigate the refraction of ST wave packets normally incident onto a planar interface between two dispersive, homogeneous, isotropic media. We formulate a new, to the best of our knowledge, refractive invariant for ST wave packets in this configuration, from which we obtain a law of refraction that determines the change in their group velocity across the interface. We verify this new refraction law in ZnSe and CdSe, both of which manifest large chromatic dispersion at near-infrared frequencies in the vicinity of their band edges. ST wave packets can thus be utilized in nonlinear optics for bridging large group-velocity mismatches in highly dispersive scenarios.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA