Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
JACS Au ; 2(5): 1144-1159, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35647599

RESUMO

Poor ionic conductivity of the catalyst-binding, sub-micrometer-thick ionomer layers in energy conversion and storage devices is a huge challenge. However, ionomers are rarely designed keeping in mind the specific issues associated with nanoconfinement. Here, we designed nature-inspired ionomers (calix-2) having hollow, macrocyclic, calix[4]arene-based repeat units with precise, sub-nanometer diameter. In ≤100 nm-thick films, the in-plane proton conductivity of calix-2 was up to 8 times higher than the current benchmark ionomer Nafion at 85% relative humidity (RH), while it was 1-2 orders of magnitude higher than Nafion at 20-25% RH. Confocal laser scanning microscopy and other synthetic techniques allowed us to demonstrate the role of macrocyclic cavities in boosting the proton conductivity. The systematic self-assembly of calix-2 chains into ellipsoids in thin films was evidenced from atomic force microscopy and grazing incidence small-angle X-ray scattering measurements. Moreover, the likelihood of alignment and stacking of macrocyclic units, the presence of one-dimensional water wires across this macrocycle stacks, and thus the formation of long-range proton conduction pathways were suggested by atomistic simulations. We not only did see an unprecedented improvement in thin-film proton conductivity but also saw an improvement in proton conductivity of bulk membranes when calix-2 was added to the Nafion matrices. Nafion-calix-2 composite membranes also took advantage of the asymmetric charge distribution across calix[4]arene repeat units collectively and exhibited voltage-gating behavior. The inclusion of molecular macrocyclic cavities into the ionomer chemical structure can thus emerge as a promising design concept for highly efficient ion-conducting and ion-permselective materials for sustainable energy applications.

2.
ACS Macro Lett ; 10(7): 791-798, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35549194

RESUMO

Interfacial behavior of submicron thick polymer films critically controls the performance of electrochemical devices. We developed a robust, everyday-accessible, fluorescence confocal laser scanning microscopy (CLSM)-based strategy that can probe the distribution of mobility, ion conduction, and other properties across ionomer samples. When fluorescent photoacid probe 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) was incorporated into <1 µm thick Nafion films on substrates, the depth-profile images showed thickness- and interface-dependent proton conduction behavior. In these films, proton conduction was weak over a region next to substrate interface, then gradually increased until air interface at 88% RH. Conversely, consistently high proton conduction with no interface dependence was observed across 35-50 µm thick bulk, free-standing Nafion membranes. A hump-like mobility/stiffness distribution was observed across Nafion films containing mobility-sensitive probe (9-(2-carboxy-2-cyanovinyl)julolidine) (CCVJ). The proton conduction and mobility distribution were rationalized as a combinatorial effect of interfacial interaction, ionomer chain orientation, chain density, and ionic domain characteristics.


Assuntos
Membranas Artificiais , Prótons , Íons/química , Polímeros
3.
Front Chem ; 8: 690, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33005600

RESUMO

Converting industrial/agricultural lignin-rich wastes to efficient, cost-effective materials for electrochemical devices (e.g., fuel cells) can aid in both bio- and energy economy. A major limitation of fuel cells is the weak ion conductivity within the ~2-30-nm thick, ion-conducting polymer (ionomer)-based catalyst-binder layer over electrodes. Here, we strategically sulfonated kraft lignin (a by-product of pulp and paper industries) to design ionomers with varied ion exchange capacities (IECs) (LS x; x = IEC) that can potentially overcome this interfacial ion conduction limitation. We measured the ion conductivity, water uptake, ionic domain characteristics, density, and predicted the water mobility/stiffness of Nafion, LS 1.6, and LS 3.1 in submicron-thick hydrated films. LS 1.6 showed ion conductivity an order of magnitude higher than Nafion and LS 3.1 in films with similar thickness. The ion conductivity of these films was not correlated to their water uptake and IECs. Within the three-dimensional, less dense, branched architecture of LS 1.6 macromolecules, the -SO3H and -OH groups are in close proximity, which likely facilitated the formation of larger ionic domains having highly mobile water molecules. As compared to LS 1.6, LS 3.1 showed a higher glass transition temperature and film stiffness at dry state, which sustained during humidification. On the contrary, Nafion stiffened significantly upon humidification. The smaller ionic cluster within stiff LS 3.1 and Nafion films thus led to ion conductivity lower than LS 1.6. Since LS x ionomers (unlike commercial lignosulfonate) are not water soluble, they are suitable for low-temperature, water-mediated ion conduction in submicron-thick films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA