Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 18(24): 15898-15904, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38833667

RESUMO

We report the generation of a nonbenzenoid polycyclic conjugated hydrocarbon, which consists of a biphenyl moiety substituted by indenyl units at the 4,4' positions, on ultrathin sodium chloride films by tip-induced chemistry. Single-molecule characterization by scanning tunneling and atomic force microscopy reveals an open-shell biradical ground state with a peculiar electronic configuration wherein the singly occupied molecular orbitals (SOMOs) are lower in energy than the highest occupied molecular orbital (HOMO).

2.
Adv Mater ; : e2402568, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682831

RESUMO

Solution-processed high-performing ambipolar organic phototransistors (OPTs) can enable low-cost integrated circuits. Here, a heteroatom engineering approach to modify the electron affinity of a low band gap diketopyrrolopyrole (DPP) co-polymer, resulting in well-balanced charge transport, a more preferential edge-on orientation and higher crystallinity, is demonstrated. Changing the comonomer heteroatom from sulfur (benzothiadiazole (BT)) to oxygen (benzooxadiazole (BO)) leads to an increased electron affinity and introduces higher ambipolarity. Organic thin film transistors fabricated from the novel PDPP-BO exhibit charge carrier mobility of 0.6 and 0.3 cm2 Vs⁻1 for electrons and holes, respectively. Due to the high sensitivity of the PDPP-based material and the balanced transport in PDPP-BO, its application as an NIR detector in an OPT architecture is presented. By maintaining a high on/off ratio (9 × 104), ambipolar OPTs are shown with photoresponsivity of 69 and 99 A W⁻1 and specific detectivity of 8 × 107 for the p-type operation and 4 × 109 Jones for the n-type regime. The high symmetric NIR-ambipolar OPTs are also evaluated as ambipolar photo-inverters, and show a 46% gain enhancement under illumination.

3.
Nat Chem ; 16(5): 755-761, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38332330

RESUMO

Indenofluorenes are non-benzenoid conjugated hydrocarbons that have received great interest owing to their unusual electronic structure and potential applications in nonlinear optics and photovoltaics. Here we report the generation of unsubstituted indeno[1,2-a]fluorene on various surfaces by the cleavage of two C-H bonds in 7,12-dihydroindeno[1,2-a]fluorene through voltage pulses applied by the tip of a combined scanning tunnelling microscope and atomic force microscope. On bilayer NaCl on Au(111), indeno[1,2-a]fluorene is in the neutral charge state, but it exhibits charge bistability between neutral and anionic states on the lower-workfunction surfaces of bilayer NaCl on Ag(111) and Cu(111). In the neutral state, indeno[1,2-a]fluorene exhibits one of two ground states: an open-shell π-diradical state, predicted to be a triplet by density functional and multireference many-body perturbation theory calculations, or a closed-shell state with a para-quinodimethane moiety in the as-indacene core. We observe switching between open- and closed-shell states of a single molecule by changing its adsorption site on NaCl.

4.
ACS Appl Mater Interfaces ; 16(4): 4408-4419, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38231564

RESUMO

Laser-scribed graphene electrodes (LSGEs) are promising platforms for the development of electrochemical biosensors for point-of-care settings and continuous monitoring and wearable applications. However, the frequent occurrence of biofouling drastically reduces the sensitivity and selectivity of these devices, hampering their sensing performance. Herein, we describe a versatile, low-impedance, and robust antibiofouling interface based on sulfobetaine-zwitterionic moieties. The interface induces the formation of a hydration layer and exerts electrostatic repulsion, protecting the electrode surface from the nonspecific adsorption of various biofouling agents. We demonstrate through electrochemical and microscopy techniques that the modified electrode exhibits outstanding antifouling properties, preserving more than 90% of the original signal after 24 h of exposure to bovine serum albumin protein, HeLa cells, and Escherichia coli bacteria. The promising performance of this antifouling strategy suggests that it is a viable option for prolonging the lifetime of LSGEs-based sensors when operating on complex biological systems.


Assuntos
Incrustação Biológica , Técnicas Biossensoriais , Grafite , Humanos , Grafite/química , Células HeLa , Impedância Elétrica , Porosidade , Soroalbumina Bovina/química , Técnicas Biossensoriais/métodos , Eletrodos , Lasers , Incrustação Biológica/prevenção & controle , Técnicas Eletroquímicas
5.
Science ; 377(6603): 298-301, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857594

RESUMO

Controlling selectivity of reactions is an ongoing quest in chemistry. In this work, we demonstrate reversible and selective bond formation and dissociation promoted by tip-induced reduction-oxidation reactions on a surface. Molecular rearrangements leading to different constitutional isomers are selected by the polarity and magnitude of applied voltage pulses from the tip of a combined scanning tunneling and atomic force microscope. Characterization of voltage dependence of the reactions and determination of reaction rates demonstrate selectivity in constitutional isomerization reactions and provide insight into the underlying mechanisms. With support of density functional theory calculations, we find that the energy landscape of the isomers in different charge states is important to rationalize the selectivity. Tip-induced selective single-molecule reactions increase our understanding of redox chemistry and could lead to novel molecular machines.

6.
ACS Nano ; 16(2): 3264-3271, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35130690

RESUMO

We report the on-surface synthesis of a nonbenzenoid triradical through dehydrogenation of truxene (C27H18) on coinage metal and insulator surfaces. Voltage pulses applied via the tip of a combined scanning tunneling microscope/atomic force microscope were used to cleave individual C-H bonds in truxene. The resultant final product truxene-5,10,15-triyl (1) was characterized at the single-molecule scale using a combination of atomic force microscopy, scanning tunneling microscopy, and scanning tunneling spectroscopy. Our analyses show that 1 retains its open-shell quartet ground state, predicted by density functional theory, on a two monolayer-thick NaCl layer on a Cu(111) surface. We image the frontier orbital densities of 1 and confirm that they correspond to spin-split singly occupied molecular orbitals. Through our synthetic strategy, we also isolate two reactive intermediates toward the synthesis of 1, derivatives of fluorenyl radical and indeno[1,2-a]fluorene, with predicted open-shell doublet and triplet ground states, respectively. Our results should have bearings on the synthesis of nonbenzenoid high-spin polycyclic frameworks with magnetism beyond Lieb's theorem.

7.
Angew Chem Int Ed Engl ; 60(50): 26346-26350, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34664770

RESUMO

The Diels-Alder reaction is one of the most popular reactions in organic chemistry. However, its use in the field of on-surface synthesis is hampered by the spatial restrictions of this cycloaddition reaction. Herein we selected a cyclic strained triyne to demonstrate an on-surface hexadehydro-Diels-Alder reaction in a single molecule. The reaction was studied in detail by means of atomic force microscopy (AFM) with CO-functionalized tips. Our results pave the way to use this iconic pericyclic reaction for on-surface synthesis, introducing the concept of atom economy in the field.

8.
Phys Rev Lett ; 126(17): 176801, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33988431

RESUMO

By employing single charge injections with an atomic force microscope, we investigated redox reactions of a molecule on a multilayer insulating film. First, we charged the molecule positively by attaching a single hole. Then we neutralized it by attaching an electron and observed three channels for the neutralization. We rationalize that the three channels correspond to transitions to the neutral ground state, to the lowest energy triplet excited states and to the lowest energy singlet excited states. By single-electron tunneling spectroscopy we measured the energy differences between the transitions obtaining triplet and singlet excited state energies. The experimental values are compared with density functional theory calculations of the excited state energies. Our results show that molecules in excited states can be prepared and that energies of optical gaps can be quantified by controlled single-charge injections. Our work demonstrates the access to, and provides insight into, ubiquitous electron-attachment processes related to excited-state transitions important in electron transfer and molecular optoelectronics phenomena on surfaces.

9.
Energy Fuels ; 35(3): 2224-2233, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33574639

RESUMO

The initial thermal reactions of aromatic hydrocarbons are relevant to many industrial applications. However, tracking the growing number of heavy polycyclic aromatic hydrocarbon (PAH) products is extremely challenging because many reactions are unfolding in parallel from a mixture of molecules. Herein, we studied the reactions of 2,7-dimethylpyrene (DMPY) to decipher the roles of methyl substituents during mild thermal treatment. We found that the presence of methyl substituents is key for reducing the thermal severity required to initiate chemical reactions in natural molecular mixtures. A complex mixture of thermal products including monomers, dimers, and trimers was characterized by NMR, mass spectrometry, and noncontact atomic force microscopy (nc-AFM). A wide range of structural transformations including methyl transfer and polymerization reactions were identified. A detailed mechanistic understanding on the roles of H radicals during the polymerization of polycyclic aromatic hydrocarbons was obtained.

10.
Rev Sci Instrum ; 92(12): 123704, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34972437

RESUMO

We present the design of a variable temperature setup that uses a pulse tube cryocooler to perform break-junction experiments at variable temperatures ranging from 12 K to room temperature. The use of pulse tube coolers is advantageous because they are easy to use, can be highly automatized, and used to avoid wastage of cryogenic fluids. This is the reason why dry cryostats are conquering more and more fields in cryogenic physics. However, the main drawback is the level of vibration that can be up to several micrometers at the cold-head. The vibrations make the operation of scanning probe-based microscopes challenging. We implemented vibration-damping techniques that allow obtaining a vibration level of 12 pm between the tip and sample. With these adaptations, we show the possibility to perform break junction measurements in a cryogenic environment and keep in place atomic chains of a few nanometers between the two electrodes.

11.
Angew Chem Int Ed Engl ; 59(51): 22989-22993, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-32845044

RESUMO

Glaser-like coupling of terminal alkynes by thermal activation is extensively used in on-surface chemistry. Here we demonstrate an intramolecular version of this reaction performed by atom manipulation. We used voltage pulses from the tip to trigger a Glaser-like coupling between terminal alkyne carbons within a custom-synthesized precursor molecule adsorbed on bilayer NaCl on Cu(111). Different conformations of the precursor molecule and the product were characterized by molecular structure elucidation with atomic force microscopy and orbital density mapping with scanning tunneling microscopy, accompanied by density functional theory calculations. We revealed partially dehydrogenated intermediates, providing insight into the reaction pathway.

12.
Science ; 365(6449): 142-145, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31296763

RESUMO

The charge state of a molecule governs its physicochemical properties, such as conformation, reactivity, and aromaticity, with implications for on-surface synthesis, catalysis, photoconversion, and applications in molecular electronics. On insulating, multilayer sodium chloride (NaCl) films, we controlled the charge state of organic molecules and resolved their structures in neutral, cationic, anionic, and dianionic states by atomic force microscopy, obtaining atomic resolution and bond-order discrimination using carbon monoxide (CO)-functionalized tips. We detected changes in conformation, adsorption geometry, and bond-order relations for azobenzene, tetracyanoquinodimethane, and pentacene in multiple charge states. Moreover, for porphine, we investigate the charge state-dependent change of aromaticity and conjugation pathway in the macrocycle. This work opens the way to studying chemical-structural changes of individual molecules for a wide range of charge states.

13.
Phys Rev Lett ; 121(22): 226101, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30547655

RESUMO

By atom manipulation we performed on-surface chemical reactions of a single molecule on a multilayer insulating film using noncontact atomic force microscopy. The single-electron sensitivity of atomic force microscopy allows us to follow the addition of single electrons to the molecule and the investigation of the reaction products. By performing a novel strategy based on long-lived doubly charged states a single molecule is fragmented. The fragmentation can be reverted by again changing the charge state of the system, characterizing a reversible reaction. The experimental results in addition to density-functional theory provide insight into the charge states of the different products and reaction pathways. Similar molecular systems could be used as charge-transfer units and to induce reversible chemical reactions.

14.
Chemistry ; 24(67): 17697-17700, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30324668

RESUMO

The synthesis of a threefold symmetric nanographene with 19 cata-fused benzene rings distributed within six branches is reported. This flat dendritic starphene, which is the largest unsubstituted cata-condensed PAH that has been obtained to date, was prepared in solution by means of a palladium-catalyzed aryne cyclotrimerization reaction and it was characterized on surface by scanning probe microscopy with atomic resolution.

15.
J Am Chem Soc ; 140(26): 8156-8161, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29893120

RESUMO

Here we present a new method that integrates atomic force microscopy (AFM) with analytical tools such as high-performance liquid chromatography (HPLC) with diode-array ultraviolet-visible (UV) absorbance, and mass spectrometry (MS) along with synthetic chemistry. This allows the detection, identification, and quantification of novel polycyclic aromatic hydrocarbons (PAH) in complex molecular mixtures. This multidisciplinary methodology is employed to characterize the supercritical pyrolysis products of n-decane, a model fuel. The pyrolysis experiments result in a complex mixture of both unsubstituted as well as highly methylated PAH. We demonstrate the AFM-driven discovery of a novel compound, benz[ l]indeno[1,2,3- cd]pyrene, with the chemical structure assignment serving as input for the chemical synthesis of such molecule. The synthesis is verified by AFM, and the synthesized compound is used as a reference standard in analytical measurements, establishing the first-ever unequivocal identification and quantification of this PAH as a fuel product. Moreover, the high-resolution AFM analysis detected several five- to eight-ring PAH, which represents novel fuel pyrolysis and/or combustion products. This work provides a route to develop new analytical standards by symbiotically using AFM, chemical synthesis, and modern analytical tools.

16.
Nat Nanotechnol ; 13(5): 376-380, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29662243

RESUMO

Intermolecular single-electron transfer on electrically insulating films is a key process in molecular electronics1-4 and an important example of a redox reaction5,6. Electron-transfer rates in molecular systems depend on a few fundamental parameters, such as interadsorbate distance, temperature and, in particular, the Marcus reorganization energy 7 . This crucial parameter is the energy gain that results from the distortion of the equilibrium nuclear geometry in the molecule and its environment on charging8,9. The substrate, especially ionic films 10 , can have an important influence on the reorganization energy11,12. Reorganization energies are measured in electrochemistry 13 as well as with optical14,15 and photoemission spectroscopies16,17, but not at the single-molecule limit and nor on insulating surfaces. Atomic force microscopy (AFM), with single-charge sensitivity18-22, atomic-scale spatial resolution 20 and operable on insulating films, overcomes these challenges. Here, we investigate redox reactions of single naphthalocyanine (NPc) molecules on multilayered NaCl films. Employing the atomic force microscope as an ultralow current meter allows us to measure the differential conductance related to transitions between two charge states in both directions. Thereby, the reorganization energy of NPc on NaCl is determined as (0.8 ± 0.2) eV, and density functional theory (DFT) calculations provide the atomistic picture of the nuclear relaxations on charging. Our approach presents a route to perform tunnelling spectroscopy of single adsorbates on insulating substrates and provides insight into single-electron intermolecular transport.

17.
Angew Chem Int Ed Engl ; 57(15): 3888-3908, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29485190

RESUMO

Using scanning probe microscopy techniques, at low temperatures and in ultrahigh vacuum, individual molecules adsorbed on surfaces can be probed with ultrahigh resolution to determine their structure and details of their conformation, configuration, charge states, aromaticity, and the contributions of resonance structures. Functionalizing the tip of an atomic force microscope with a CO molecule enabled atomic-resolution imaging of single molecules, and measurement of their adsorption geometry and bond-order relations. In addition, by using scanning tunneling microscopy and Kelvin probe force microscopy, the density of the molecular frontier orbitals and the electric charge distribution within molecules can be mapped. Combining these techniques yields a high-resolution tool for the identification and characterization of individual molecules. The single-molecule sensitivity and the possibility of atom manipulation to induce chemical reactions with the tip of the microscope open up unique applications in chemistry, and differentiate scanning probe microscopy from conventional methods for molecular structure elucidation. Besides being an aid for challenging cases in natural product identification, atomic force microscopy has been shown to be a powerful tool for the investigation of on-surface reactions and the characterization of radicals and molecular mixtures. Herein we review the progress that high-resolution scanning probe microscopy with functionalized tips has made for molecular structure identification and characterization, and discuss the challenges it will face in the years to come.

18.
ACS Nano ; 12(1): 768-778, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29272579

RESUMO

Quantum devices depend on addressable elements, which can be modified separately and in their mutual interaction. Self-assembly at surfaces, for example, formation of a porous (metal-) organic network, provides an ideal way to manufacture arrays of identical quantum boxes, arising in this case from the confinement of the electronic (Shockley) surface state within the pores. We show that the electronic quantum box state as well as the interbox coupling can be modified locally to a varying extent by a selective choice of adsorbates, here C60, interacting with the barrier. In view of the wealth of differently acting adsorbates, this approach allows for engineering quantum states in on-surface network architectures.

19.
Chem Sci ; 8(3): 2315-2320, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451335

RESUMO

We designed and studied hydrocarbon model compounds by high-resolution noncontact atomic force microscopy. In addition to planar polycyclic aromatic moieties, these novel model compounds feature linear alkyl and cycloaliphatic motifs that exist in most hydrocarbon resources - particularly in petroleum asphaltenes and other petroleum fractions - or in lipids in biological samples. We demonstrate successful intact deposition by sublimation of the alkyl-aromatics, and differentiate aliphatic moieties from their aromatic counterparts which were generated from the former by atomic manipulation. The characterization by AFM in combination with atomic manipulation provides clear fingerprints of the aromatic and aliphatic moieties that will facilitate their assignment in a priori unknown samples.

20.
Nano Lett ; 17(3): 1956-1962, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28157314

RESUMO

We show that highly ordered two-dimensional (2D) chessboard arrays consisting of a periodic arrangement of two different molecules can be obtained by self-assembly of unsubstituted metal-phthalocyanines (metal-Pcs) on a suitable substrate serving as the template. Specifically, CuPc + MnPc and CuPc + CoPc mixtures sort into highly ordered Cu/Mn and Cu/Co chessboard arrays on the square p(10 × 10) reconstruction of bismuth on Cu(100). Such created bimolecular chessboard assemblies emerge from the site-specific interactions between the central transition-metal ions and the periodically reconstructed substrate. This work provides a conceptually new approach to induce 2D chessboard patterns in that no functionalization of the molecules is needed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA