Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
ACS Biomater Sci Eng ; 9(5): 2558-2571, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37067339

RESUMO

Glioblastoma (GBM) is a deadly tumor of the central nervous system (CNS) having a dismal prognosis. miRNA-based therapeutics hold immense potential for GBM therapy; however, its delivery remains a daunting challenge. MicroRNA-210 has been established as a critical oncomiR in GBM. Our group has developed novel, PEI-functionalized transglutaminase-based nanoflowers (TGNFs, ∼61 nm in diameter) for the efficient delivery of anti-miR-210 to glioblastoma cells in vitro. TGNFs show low cytotoxicity to normal human fibroblasts, do not affect the liver and kidney health of CD1 mice, and offer >95% anti-miR encapsulation efficiency, serum stability, and protection against polyanion moieties. Their synthesis is cost-effective and does not involve the application of harsh chemicals. TGNFs successfully delivered anti-miR-210 to glioblastoma cells, decreasing cellular proliferation and migration and increasing apoptosis. Overall, this research highlights the potential of TGNFs as delivery agents in miRNA inhibition therapy and encourages further preclinical studies to explore the potential of miR-210 as a therapeutic target in GBM and various other cancers where the oncogenic role of miR-210 has been well-established.


Assuntos
Glioblastoma , MicroRNAs , Humanos , Camundongos , Animais , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Antagomirs/uso terapêutico , Polietilenoimina/uso terapêutico , Linhagem Celular Tumoral , MicroRNAs/genética
2.
Phytomed Plus ; 2(2): 100241, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35403092

RESUMO

Background: Over million people have been infected with SARS-CoV-2 virus worldwide, with around 3% reported deaths till date. A few conventional antiviral treatments have been tried to mitigate the coronavirus. However, many alternative therapeutics are being evaluated worldwide. In the present study, we investigated traditional Indian medicinal compounds antiviral potencies as an effective drug for targeting SARS-CoV-2E. SARS-CoV-2 E protein plays a key role in coronavirus life cycle and is an interesting target for the development of anti-SARS-CoV-2 E drugs. Methods: Molecular docking studies of medicinal compounds possessing wide range of pharmacological and antiviral activities against enveloped viruses were evaluated with the computer-aided drug design screening software; PyRx. Twelve medicinal compounds isolated from plants were screened and visualized on Biovia Discovery-Studio. Moreover, SARS-CoV-2 E protein's secondary structural insights were deciphered using Swiss Model and ProFunc web server. Results: Glycyrrhizic acid, triterpene glycoside isolated from plants of Glycyrrhiza (licorice) showed interactions with envelope protein at chain A: Arg 61, chain B: Phe 23, chain B: Tyr 57, and chain C: Val 25. ß- boswellic acid, an ayurvedic herb (pentacyclic terpenoid are produced by Boswellia) represented direct interactions and indirect binding with chain C. Their pharmacological aspects and drug-likeness properties were deduced by DruLiTo. Toxicological assessment, along with their ADME profiling, was validated using vNNADMET. The findings showed that ligands, ß-boswellic acid, and glycyrrhizic acid possessed the best bindings, with the target having binding affinity (-9.1 kcal/mol) amongst compounds tested against SARS-CoV-2 E. In-vitro studies reveals the promising effect as potent SARS-CoV-2 E inhibitors. Functionality loss and structural disruptions with ∼90% were observed by UV-spectra and fluorescent based analyses. Conclusion: The study demonstrated that ß-boswellic acid, and glycyrrhizic acid are strong SARS-CoV-2 E protein inhibitors. In addition, the work linked GA antiviral activity to its effect on SARS-CoV- 2 E protein that can pave the way for designing antiviral therapeutics.

3.
J Control Release ; 341: 555-565, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34906604

RESUMO

Antibody drug conjugates (ADCs) are an emerging therapeutic modality for targeted cancer treatment. They represent the unique amalgamation of chemotherapy and immunotherapy. ADCs comprise of monoclonal antibodies linked with drugs (payloads) through a chemical linker designed to deliver the cytotoxic moiety to the cancer cells. The present paper is a review of recent clinical advances of each component of ADCs (antibody/linker/payload) and how the individual component influences the activity of ADCs. The review discusses opportunities for improving ADCs efficiency and ways to have a better antibody-based molecular platform, which could substantially increase chemotherapy outcomes. This review casts an outlook on how ADCs enhancement in terms of their pharmacokinetics, therapeutic indexes and safety profiles can overcome the prevailing challenges like drug resistance in cancer treatment. A novel strategy of augmenting antibodies with nanoparticles anticipates a huge success in terms of targeted delivery of drugs in several diseases. Antibody conjugated nanoparticles (ACNPs) are a very promising strategy for the cutting-edge development of chemo/immunotherapies for efficient delivery of payloads at the targeted cancer cells. The avenues of a high drug to antibody ratio (DAR) owing to the selection of broad chemotherapy payloads, regulating drug release eliciting higher avidity of ACNPs over ADCs will be the modern immunotherapeutics. ACNPs carry immense potential to mark a paradigm shift in cancer chemotherapy that may be a substitute for ADCs.


Assuntos
Antineoplásicos Imunológicos , Antineoplásicos , Imunoconjugados , Nanopartículas , Anticorpos Monoclonais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antineoplásicos Imunológicos/farmacocinética
4.
Bioresour Technol ; 340: 125627, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34330004

RESUMO

Transglutaminase forms isopeptide bonds in proteins which are helpful in various industrial applications. However, low productivity and high cost are the major bottlenecks for industrial Transglutaminase production. The present study describes the regulatory mechanism of microbial Transglutaminase (MTGase) biosynthesis from Streptomyces mobaraensis and the effect of key regulators to maximize production. The transcriptional responses under the effect of various key modulators of MTGasebiosynthesis were evaluated. Productivity of MTGase with novel biosynthesis approach by regulators augmentation was correlated by transcriptional profiling. The optimization by key modulators by combinational supplementation led to 2-fold rise in activity. The functional attributes, the copy number of MTGase gene and relative changes were assessed by Real-Time quantitative PCR. Protease, MgCl2, CTAB induced upregulation, whereas PMSF, NaF and bleomycin sulphate showed inhibitory action on MTGase production and activity. The optimization by combinational supplementation of key modulators led to 4.27-fold increase (6.11 IU/mL) in production.


Assuntos
Streptomyces , Transglutaminases , Endopeptidases , Proteínas , Streptomyces/genética , Transglutaminases/genética
5.
Biotechnol Rep (Amst) ; 30: e00613, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33996521

RESUMO

Antimicrobial resistance (AMR) is one of the serious global public health threats that require immediate action. With the emergence of new resistance mechanisms in infection-causing microorganisms such as bacteria, fungi, and viruses, AMR threatens the effective prevention and treatment of diseases caused by them. This has resulted in prolonged illness, disability, and death. It has been predicted that AMR will lead to over ten million deaths by 2050. The rapid spread of multidrug-resistant bacteria is also causing old antibiotics to become ineffective. Among the diverse factors contributing to AMR, intrinsic biofilm development has been highlighted as an essential contributing facet. Moreover, biofilm-derived antibiotic tolerance leads to serious recurrent chronic infections. Therefore, the discovery of novel bioactive molecules is a potential solution that can help combat AMR. To achieve this, sustained mining of novel antimicrobial leads from actinobacteria, particularly marine actinobacteria, can be a promising strategy. Given their vast diversity and different habitats, the extraordinary capacity of actinobacteria can be tapped to synthesize new antibiotics or bioactive molecules for biofilm inhibition. Advanced screening strategies and novel approaches in the field of modern biochemical and molecular biology can be used to detect such new compounds. In view of this, the present review focuses on understanding some of the recent strategies to inhibit biofilm formation and explores the potential role of marine actinobacteria as sources of novel antibiotics and biofilm inhibitor molecules.

6.
RSC Adv ; 11(55): 34613-34630, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-35494746

RESUMO

Breast cancer is the most common malignancy among women. With the aim of decreasing the toxicity of conventional breast cancer treatments, an alternative that could provide appropriate and effective drug utilization was envisioned. Thus, we contemplated and compared the in vitro effects of microbial transglutaminase nanoflowers (MTGase NFs) on breast cancer cells (MCF-7). Transglutaminase is an important regulatory enzyme acting as a site-specific cross-linker for proteins. With the versatility of MTGase facilitating the nanoflower formation by acting as molecular glue, it was demonstrated to have anti-cancer properties. The rational drug design based on a transglutaminase enzyme-assisted approach led to the uniform shape of petals in these nanoflowers, which had the capacity to act directly as an anti-cancer drug. Herein, we report the anti-cancer characteristics portrayed by enzymatic MTGase NFs, which are biocompatible in nature. This study demonstrated the prognostic and therapeutic significance of MTGase NFs as a nano-drug in breast cancer treatment. The results on MCF-7 cells showed a significantly improved in vitro therapeutic efficacy. MTGase NFs were able to exhibit inhibitory effects on cell viability (IC50-8.23 µg ml-1) within 24 h of dosage. To further substantiate its superior anti-proliferative role, the clonogenic potential was measured to be 62.8%, along with migratory inhibition of cells (3.76-fold change). Drastic perturbations were induced (4.61-fold increase in G0/G1 phase arrest), pointed towards apoptotic induction with a 58.9% effect. These results validated the role of MTGase NFs possessing a cytotoxic nature in mitigating breast cancer. Thus, MTGase bestows distinct functionality towards therapeutic nano-modality, i.e., nanoflowers, which shows promise in cancer treatment.

7.
Int J Biol Macromol ; 163: 1747-1758, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32961179

RESUMO

The chemical cross-linkers are difficult to be removed from the scaffold materials, which limit their application in tissue engineering; designing an efficient biocompatible hydrogel is though challenging is desirable. The aim of the present study was to immobilize microbial Transglutaminase (MTGase) enzyme on multi-walled carbon nanotubes (MWCNTs) for its application in hydrogel scaffolds designing. MTGase from Streptomyces mobaraensis, a non-toxic biological cross-linker, was employed for a greener approach with enhanced biochemical and structural properties. The maximum immobilization efficiency of 58% was achieved when MTGase was covalently coupled on MWCNTs. The kinetic studies showed 4.76-fold increase in catalytic efficiency and good reusability upto seven cycles. Attachment of enzyme on MWCNTs surface was studied through SEM and FTIR. The immobilized enzyme showed good cross-linking efficiency in gelatin hydrogel scaffold resulting decrease in swelling ratio of hydrogel. Our findings report for the first time the development of novel biocompatible hydrogel scaffolds with immobilized MTGase onto MWCNTS. Inevitable damage of hydrogels are incurred during their applications. To offset the damage of hydrogels, the creation of bioinspired hydrogels emulating native tissue microenvironment is highly significant. Microbial TGase holds promising future with its applicability as a cross-linker of hydrogel scaffolds in the area of tissue engineering.


Assuntos
Enzimas Imobilizadas/química , Hidrogéis/química , Nanotubos de Carbono/química , Alicerces Teciduais/química , Transglutaminases/química , Materiais Biocompatíveis/química , Materiais Biomiméticos/química , Gelatina/química , Cinética , Streptomyces/química , Engenharia Tecidual/métodos
8.
Bioresour Technol ; 287: 121391, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31076295

RESUMO

This work studied the production of Transglutaminase (TGase) using wheat bran as carbon source. The medium components and culture conditions were optimized by statistical Box-Behnken response surface methodology. The release of active Transglutaminase was enhanced by adding (i) protease to remove pro-region to make inactive enzyme to active form, (ii) Cetyl trimethyl ammonium bromide (CTAB) which facilitated more secretion. Under finally optimized conditions viz. 5 g wheat bran, protease: 39.14 U, magnesium chloride (MgCl2): 0.10 M, CTAB: 0.08% and inoculation size: 2% led to 4-fold (12.949 ±â€¯0.061 IU/g) increased TGase production over that of un-optimized conditions. The application of TGase was shown to be useful in effective casein cross-linking.


Assuntos
Streptomyces , Endopeptidases , Fermentação , Resíduos Industriais , Cloreto de Magnésio , Transglutaminases
9.
Microbiol Res ; 215: 7-14, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30172311

RESUMO

Microbial transglutaminase (MTGase) has become a driving force in the food industry cross-linking the food proteins. MTGase-the nature's molecular glue is recognized to reorient food protein's functional properties without affecting its nutritive value. The scope and approach of this review is to have insight on the action mechanism of MTGase and impact of molecular linkage on functional proteins in various protein moieties in development of innovative features in food production for better consumer's choice and satisfaction. The study covers a wide range of published work across food industries involving innovative use of MTGase, an environment friendly production approach for commercial utilization to get better outcome in terms of culinary delight. The intrinsic biochemical properties and structural information by sequence analysis and clustering validates the mode of reaction mechanism of the biological glue enzyme. The review singles out how the MTGase emerged as a prime choice in ever evolving food industry.


Assuntos
Suplementos Nutricionais , Indústria Alimentícia , Transglutaminases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Fenômenos Químicos , Reagentes de Ligações Cruzadas , Laticínios , Grão Comestível , Produtos da Carne , Fenômenos Mecânicos , Plantas Comestíveis , Alimentos Marinhos , Solubilidade , Glycine max , Streptomyces/metabolismo , Transglutaminases/química , Transglutaminases/classificação , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA