Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Sci Rep ; 11(1): 18295, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521964

RESUMO

Drug resistance against coccidiosis has posed a significant threat to chicken welfare and productivity worldwide, putting daunting pressure on the poultry industry to reduce the use of chemoprophylactic drugs and live vaccines in poultry to treat intestinal diseases. Chicken coccidiosis, caused by an apicomplexan parasite of Eimeria spp., is a significant challenge worldwide. Due to the experience of economic loss in production and prevention of the disease, development of cost-effective vaccines or drugs that can stimulate defence against multiple Eimeria species is imperative to control coccidiosis. This study explored Eimeria immune mapped protein-1 (IMP-1) to develop a multiepitope-based vaccine against coccidiosis by identifying antigenic T-cell and B-cell epitope candidates through immunoinformatic techniques. This resulted in the design of 7 CD8+, 21 CD4+ T-cell epitopes and 6 B-cell epitopes, connected using AAY, GPGPG and KK linkers to form a vaccine construct. A Cholera Toxin B (CTB) adjuvant was attached to the N-terminal of the multiepitope construct to improve the immunogenicity of the vaccine. The designed vaccine was assessed for immunogenicity (8.59968), allergenicity and physiochemical parameters, which revealed the construct molecular weight of 73.25 kDa, theoretical pI of 8.23 and instability index of 33.40. Molecular docking simulation of vaccine with TLR-5 with binding affinity of - 151.893 kcal/mol revealed good structural interaction and stability of protein structure of vaccine construct. The designed vaccine predicts the induction of immunity and boosted host's immune system through production of antibodies and cytokines, vital in hindering surface entry of parasites into host. This is a very important step in vaccine development though further experimental study is still required to validate these results.


Assuntos
Coccidiose/veterinária , Eimeria/imunologia , Doenças das Aves Domésticas/prevenção & controle , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Animais , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Galinhas/imunologia , Galinhas/parasitologia , Coccidiose/imunologia , Coccidiose/prevenção & controle , Sequência Conservada/genética , Eimeria/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/parasitologia , Proteínas de Protozoários/genética
3.
Infect Genet Evol ; 92: 104875, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33905890

RESUMO

Plasmodium falciparum (P. falciparum) is a leading causative agent of malaria, an infectious disease that can be fatal. Unfortunately, control measures are becoming less effective over time. A vaccine is needed to effectively control malaria and lead towards the total elimination of the disease. There have been multiple attempts to develop a vaccine, but to date, none have been certified as appropriate for wide-scale use. In this study, an immunoinformatics method is presented to design a multi-epitope vaccine construct predicted to be effective against P. falciparum malaria. This was done through the prediction of 12 CD4+ T-cell, 10 CD8+ T-cell epitopes and, 1 B-cell epitope which were assessed for predicted high antigenicity, immunogenicity, and non-allergenicity through in silico methods. The Human Leukocyte Antigen (HLA) population coverage showed that the alleles associated with the epitopes accounted for 78.48% of the global population. The CD4+ and CD8+ T-cell epitopes were docked to HLA-DRB1*07:01 and HLA-A*32:01 successfully. Therefore, the epitopes were deemed to be suitable as components of a multi-epitope vaccine construct. Adjuvant RS09 was added to the construct to generate a stronger immune response, as confirmed by an immune system simulation. Finally, the structural stability of the predicted multi-epitope vaccine was assessed using molecular dynamics simulations. The results show a promising vaccine design that should be further synthesised and assessed for its efficacy in an experimental laboratory setting.


Assuntos
Biologia Computacional , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Vacinas Antimaláricas/química , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Humanos
4.
Vaccine ; 39(7): 1111-1121, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33478794

RESUMO

At the beginning of the year 2020, the world was struck with a global pandemic virus referred to as SARS-CoV-2 (COVID-19) which has left hundreds of thousands of people dead. To control this virus, vaccine design becomes imperative. In this study, potential epitopes-based vaccine candidates were explored. Six hundred (600) genomes of SARS-CoV-2 were retrieved from the viPR database to generate CD8+ T-cell, CD4+ T-cell and linear B-cell epitopes which were screened for antigenicity, immunogenicity and non-allergenicity. The results of this study provide 19 promising candidate CD8+ T-cell epitopes that strongly overlap with 8 promising B-cells epitopes. Another 19 CD4+ T-cell epitopes were also identified that can induce IFN-γ and IL-4 cytokines. The most conserved MHC-I and MHC-II for both CD8+ and CD4+ T-cell epitopes are HLA-A*02:06 and HLA-DRB1*01:01 respectively. These epitopes also bound to Toll-like receptor 3 (TLR3). The population coverage of the conserved Major Histocompatibility Complex Human Leukocyte Antigen (HLA) for both CD8+ T-cell and CD4+ T-cell ranged from 65.6% to 100%. The detailed analysis of the potential epitope-based vaccine and their mapping to the complete COVID-19 genome reveals that they are predominantly found in the location of the surface (S) and membrane (M) glycoproteins suggesting the potential involvement of these structural proteins in the immunogenic response and antigenicity of the virus. Since the majority of the potential epitopes are located on M protein, the design of multi-epitope vaccine with the structural protein is highly promising though the whole M protein could also serve as a viable epitope for the development of an attenuated vaccine. Our findings provide a baseline for the experimental design of a suitable vaccine against SARS-CoV-2.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Humanos , Interferon gama , Interleucina-4 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia , Proteínas da Matriz Viral/imunologia
5.
Onderstepoort J Vet Res ; 87(1): e1-e10, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-33054259

RESUMO

This study was conducted from January to October 2018 with the objective to determine the prevalence and genetic diversity of Eimeria species in broiler and free-range chickens in KwaZulu-Natal province, South Africa. A total of 342 faecal samples were collected from 12 randomly selected healthy broiler chicken farms and 40 free-range chickens from 10 different locations. Faecal samples were screened for the presence of Eimeria oocysts using a standard flotation method. The species of Eimeria isolates were confirmed by amplification of the internal transcribed spacer 1 (ITS-1) partial region and sequences analysis. Among broiler and free-ranging chickens, 19 out of 41 pens (46.3%) and 25 out of 42 faecal samples (59.5%) were positive for Eimeria infection. Molecular detection revealed the following species: Eimeria maxima, Eimeria tenella, Eimeria acervulina, Eimeria brunetti and Eimeria mitis in all the samples screened. Similarly, polymerase chain reaction assays specific for three cryptic Eimeria operational taxonomic units were negative for all the samples. Phylogenetic analysis of the ITS-1 sequences supported species identity with the greatest variation detected for E. mitis. This study provides information on the range and identity of Eimeria species, and their genetic relatedness, circulating in commercially reared broilers and free-ranging chickens from different locations in KwaZulu-Natal province.


Assuntos
Galinhas , Coccidiose/veterinária , Eimeria/fisiologia , Variação Genética , Doenças das Aves Domésticas/epidemiologia , Animais , Coccidiose/epidemiologia , Coccidiose/parasitologia , Eimeria/classificação , Eimeria/genética , Eimeria/isolamento & purificação , Fezes/parasitologia , Oocistos/isolamento & purificação , Filogenia , Doenças das Aves Domésticas/parasitologia , Prevalência , África do Sul/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA