RESUMO
Hydrogen (H2) as a fuel source presents a promising route toward decarbonization, though challenges in its storage remain significant. This study explores the synthesis and characterization of polytriphenylamine (PTPA) conjugated microporous polymers (CMPs) for H2 storage. Utilizing a combination of Buchwald-Hartwig (BH) coupling, the Bristol-Xi'an Jiaotong (BXJ) approach, and variations in monomer reactive site stoichiometry, a polymer with specific surface areas in excess of 1150 m2 g-1 and micropore volume of 0.47 cm3 g-1 is developed. H2 storage capacities are measured, achieving excess gravimetric uptakes of 1.65 wt.% at 1 bar and 2.51 wt.% at 50 bar and 77 K, with total capacities reaching 4.40 wt.% at 100 bar and 77 K. Net adsorption isotherms reveal advantages to H2 storage using PTPA adsorbents over traditional compression up to pressures of 10 bar at 77 K. High mass transfer coefficients of 4.95 min-1 indicate a strong material affinity for H2. This study highlights the impact of monomer ratio adjustments on the porosity and excess, total, and net H2 adsorption capacities of PTPA-based CMPs, offering insights into the importance of a non-stoichiometric monomer concentration when developing efficient CMP-based H2 storage materials.
RESUMO
Efficient treatment of wastewater contaminated with carcinogenic Cr(VI) has been a long-term challenge for both academic and industrial research efforts. Removal of Cr(VI) species by ion exchange is a relatively simple and efficient method, and its combination with highly tailorable nanomaterials is promising for the treatment of such wastewater. Here, we report a type of cationic porous organic polymer (POP), namely, PTPA-PIP, which can be prepared simply by converting the corresponding aromatic polyamine PTPA to its protonated form, thereby significantly increasing its hydrophilicity and ability to disperse homogeneously in water, crucial for application in water treatment. In addition to detailed characterization of the physicochemical properties of PTPA-PIP (including using Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), and solid-state NMR techniques), adsorption experiments demonstrate that PTPA-PIP removes low-concentration dichromate anions with very high performance, including excellent exchange capacity (maximum capacity of 230 mg Cr2O7 2-/g PTPA-PIP), ultrafast removal (initial adsorption rate of 83 mg g-1 min-1), excellent selectivity (â¼10% loss of adsorption capacity in the presence of 40-fold concentration of competing anions), as well as superior reusability (reusable for at least 5 cycles without compromised performance). These results demonstrate that PTPA-PIP is an outstanding candidate for application in industrial settings for the effective removal of harmful Cr(VI) pollutants in wastewater.
RESUMO
The need for wound closure or surgical procedures has been commonly met by the application of sutures. Unfortunately, these are often invasive or subject to contamination. Alternative solutions are offered by surgical adhesives that can be applied and set without major disruption; a new class of supramolecular-based adhesives provides potential solutions to some of these challenges. In this study, a series of polymers utilizing dopamine as a self-assembling unit are synthesized. It is found that these motifs act as extremely effective adhesives, with control over the mechanical strength of the adhesion and materials' tensile properties enabled by changing monomer feed ratios and levels of cross-linking. These materials significantly outperform commercially available bio-adhesives, showing yield strengths after adhesion at least two times higher than that of BioGlue and Tisseel, as well as the ability to re-adhere with significant recovery of adhesion strength. Promisingly, the materials are shown to be non-cytotoxic, with cell viability > 90%, and able to perform in aqueous environments without significant loss in strength. Finally, the removal of the materials, is possible using benign organic solvents such as ethanol. These properties all demonstrate the effectiveness of the materials as potential bio-adhesives, with potential advantages for use in surgery.
RESUMO
Rising carbon dioxide (CO2) levels in the atmosphere are recognized as a threat to atmospheric stability and life. Although this greenhouse gas is being produced on a large scale, there are solutions to reduction and indeed utilization of the gas. Many of these solutions involve costly or unstable technologies, such as air-sensitive metal-organic frameworks (MOFs) for CO2 capture or "non-green" systems such as amine scrubbing. Conjugated microporous polymers (CMPs) represent a simpler, cheaper, and greener solution to CO2 capture and utilization. They are often easy to synthesize at scale (a one pot reaction in many cases), chemically and thermally stable (especially in comparison with their MOF and covalent organic framework (COF) counterparts, owing to their amorphous nature), and, as a result, cheap to manufacture. Furthermore, their large surface areas, tunable porous frameworks and chemical structures mean they are reported as highly efficient CO2 capture motifs. In addition, they provide a dual pathway to utilize captured CO2 via chemical conversion or electrochemical reduction into industrially valuable products. Recent studies show that all these attractive properties can be realized in metal-free CMPs, presenting a truly green option. The promising results in these two fields of CMP applications are reviewed and explored here.
RESUMO
Pneumatic actuators are widely studied in soft robotics as they are facile, low cost, scalable, and robust and exhibit compliance similar to many systems found in nature. The challenge is to harness high energy density chemical and biochemical reactions that can generate sufficient pneumatic pressure to actuate soft systems in a controlled and ecologically compatible manner. This investigation evaluates the potential of chemical reactions as both positive and negative pressure sources for use in soft robotic pneumatic actuators. Considering the pneumatic actuation demands, the chemical mechanisms of the pressure sources, and the safety of the system, several gas evolution/consumption reactions are evaluated and compared. Furthermore, the novel coupling of both gas evolution and gas consumption reactions is discussed and evaluated for the design of oscillating systems, driven by the complementary evolution and consumption of carbon dioxide. Control over the speed of gas generation and consumption is achieved by adjusting the initial ratios of feed materials. Coupling the appropriate reactions with pneumatic soft-matter actuators has delivered autonomous cyclic actuation. The reversibility of these systems is demonstrated in a range of displacement experiments, and practical application is shown through a soft gripper that can move, pick up, and let go of objects. Our approach presents a significant step toward more autonomous, versatile soft robots driven by chemo-pneumatic actuators.
RESUMO
A series of porous polyimides (pPIs) are synthesized, and their surface areas and pore sizes are optimized by the previously reported Bristol-X'an-Jiatong (BXJ) approach. How this approach can be used to tune and optimize the porous network properties to target and tune their ability to capture CO2 is demonstrated. Once optimized, these porous organic frameworks are utilized, for the first time, as electrocatalysts for the conversion of CO2 . The excellent Faradaic efficiencies (FEs) for the conversion of CO2 to formate (91%) and methanol (85%) present exciting opportunities for the metal-free generation of useful fuels and feedstocks from CO2 . In addition, the ability to directly address and select the conversion products through tuning of the porous materials' properties highlights the potential of this approach, and more generally for a wide range of organic frameworks as future metal-free CO2 reduction catalysts.
RESUMO
Porous organic materials, as a broad class of functional materials, offer a promising route for low-cost purification of contaminated wastewaters. We have synthesized a range of highly cross-linked conjugated porous polyanilines and optimized their porosity and water dispersibility by tuning reactant feed ratios, previously unreported in the synthesis of such networks. To demonstrate their ability to adsorb model dyes used in the textile industry, we exposed the networks to a range of cationic aromatic dyes, leading to absorption capacities of >100 mg/g, reported for the first time with respect to polyaniline networks. The versatility of the networks was further demonstrated by the preparation of gel composites, producing active gels for efficient and facile removal and recycling, ideal for real-world applications. Finally, chemical modifications of the networks were undertaken to target the removal of model anionic organic dye pollutants, showing the wide applicability of our approach.
RESUMO
Colloidal liquid crystals are an emerging class of soft materials that naturally combine the unique properties of both liquid crystal molecules and colloidal particles. Chiral liquid crystal blue phases are attractive for use in fast optical displays and electrooptical devices, but the construction of blue phases is limited to a few chiral building blocks and the formation of blue phases from achiral ones is often counterintuitive. Herein we demonstrate that achiral dumbbell-shaped colloids can assemble into a rich variety of characteristic liquid crystal phases, including nematic phases with lock structures, smectic phase, and particularly experimental observation of blue phase III with double-twisted chiral columns. Phase diagrams from experiments and simulations show that the existence and stable regions of different liquid crystal phases are strongly dependent on the geometrical parameters of dumbbell-shaped colloids. This work paves a new route to the design and construction of blue phases for photonic applications.
RESUMO
The number and type of new supramolecular polymer (SMP) systems have increased rapidly in recent years. Some of the key challenges faced for these novel systems include gaining full control over the mode of self-assembly, the creation of novel architectures and exploring functionality. Here, we provide a critical overview of approaches related to perylene-based SMPs and discuss progress to exert control over these potentially important SMPs through chemical modification of the imide substituents. Imide substitutions affect self-assembly behaviour orthogonally to the intrinsic optoelectronic properties of the perylene core, making for a valuable approach to tune SMP properties. Several recent approaches are therefore highlighted, with a focus on controlling 1) morphology, 2) H- or J- aggregation, and 3) mechanism of growth and degree of aggregation using thermodynamic and kinetic control. Areas of potential future exploration and application of these functional SMPs are also explored.
RESUMO
Light-responsive binary (azobenzene + solvent) lyotropic liquid crystals (LCs) were investigated by structural modification of simple azobenzene molecules. Three benzoic acid-containing azobenzene molecules 4-(4-(hydroxyphenyl)diazenyl)benzoic acid (AZO1), 3-(4-(hydroxyphenyl)diazenyl)benzoic acid (AZO2) and 5-(4-(hydroxyphenyl)diazenyl)isophthalic acid (AZO3) were produced with various amide substitutions to produce tectons with a variety of hydrophobicity, size and branching. The LC mesophases formed by binary (azobenzene + solvent) systems with low volatility solvents dimethylsulfoxide (DMSO) and N,N-dimethylformamide (DMF) as well as the protic ionic liquids ethylammonium formate (EAF) and propylammonium formate (PAF), were investigated using a combination of small-angle X-ray and neutron scattering (SAXS and SANS) as well as polarising light microscopy (PLM). Increasing alkyl group length was found to have a strong influence on LC phase spacing, and changes in the position of substitution on the benzene ring influenced the preferred curvature of phases. UV-induced trans to cis isomerization of the samples was shown to influence ordering and optical birefringence, indicating potential applications in optical devices.
RESUMO
The formation of colloids with anisotropically patterned surfaces is of growing interest for the creation of hierarchical structures and the templating of nanoparticles. We have recently shown that well-defined two-dimensional platelets with low areal dispersities can be formed by the seeded growth of a blend of homopolymers and block copolymers. Herein we form rectangular platelets containing two block copolymers with different coronal chemistries. On addition of a solvent that is only able to solvate the corona of one block, we were able to form colloidally stable micelles with patterned surfaces via coronal collapse. Scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy and atomic force microscopy were employed to provide information on the structure and size of the patches decorating the micelle surfaces.
RESUMO
Four new conjugated microporous polymers (CMPs) were synthesized by a Buchwald-Hartwig (BH) cross-coupling reaction of tri- and tetrafunctionalized precursors to yield materials with tunable surface area and pore size distribution. This approach yielded LPCMP1-4, CMPs with significantly higher Brunauer-Emmett-Teller (BET) surface areas (more than 5 times higher) than other related BH-based CMPs. These CMPs possess not only high BET specific surface areas and high chemical and thermal stabilities, but also exhibit outstanding swellability. To the best of our knowledge, swellable behavior was studied in great detail for CMPs for the first time, with the greatest degree of swelling for methanol reaching 16.5 and 16.3 mL g-1 for LPCMP1 and LPCMP3, respectively. Owing to their excellent swellability, we further studied the adsorption capacity of these CMPs for different toxic organic vapors (including toluene and methanol). LPCMP1 and LPCMP3 adsorbed 124 and 117 mg g-1 toluene, respectively, at saturated vapor pressure. For methanol, the adsorption capacities of LPCMP1 and LPCMP3 were up to 250 and 215 mg g-1, respectively, which are the highest recorded values when compared with published data for CMPs, HCPs, MOFs, and porous carbons. These materials are promising candidates for the removal and elimination of hazardous organic vapors and chemical warfare agents. Moreover, all the polymers show high sensitivity to nitroaromatic explosives. LPCMP2 and LPCMP4 exhibit high selectivity for TNT and may be suitable as new candidates to selectively detect TNT for security or environmental applications.
RESUMO
Simple inorganic salts are used to tune N-containing conjugated microporous polymers (CMPs) synthesized by Buchwald-Hartwig (BH) cross-coupling reactions. Poly(triphenylamine), PTPA, initially shows a broad distribution of micropores, mesopores, and macropores. However, the addition of inorganic salts affects all porous network properties significantly: the pore size distribution is narrowed to the microporous range only, mimicking COFs and MOFs; the BET surface area is radically improved from 58â m2 g-1 to 1152â m2 g-1 ; and variations of the anion and cation sizes are used to fine-tune the surface area of PTPA, with the surface area showing a gradual decrease with an increase in the ionic radius of salts. The effect of the salt on the physical properties of the polymer is attributed to adjusting and optimizing the Hansen solubility parameters (HSPs) of solvents for the growing polymer, and named the Beijing-Xi'an Jiaotong (BXJ) method.
RESUMO
Polymeric supra-amphiphiles are amphiphiles that are fabricated by linking polymeric segments, or small molecules and polymeric segments, by noncovalent interactions or dynamic covalent bonds. Compared with conventional amphiphilic polymers, polymeric supra-amphiphiles are advantageous in that they possess dynamic features and their preparation may be to some extent more facile. Moreover, polymeric supra-amphiphiles are endowed with richer structure and higher stability compared with small-molecule supra-amphiphiles. Owing to these properties, polymeric supra-amphiphiles have so far shown great promise as surfactants, nanocarriers and in therapies. In this tutorial review, recent work on polymeric supra-amphiphiles, from molecular architectures to functional assemblies, is presented and summarized. Different polymeric supra-amphiphile topologies and related applications are highlighted. By combining polymer chemistry with supramolecular chemistry and colloid science, we anticipate that the study of polymeric supra-amphiphiles will promote the continued development of the molecular engineering of functional supramolecular systems, and lead to practical applications, especially in drug delivery.
RESUMO
The controlled solution self-assembly of an amphiphilic perylene diimide (PDI), with a hydrophobic perylene core and hydrophilic imide substituents with polydisperse oligo(ethylene glycol) (OEG) tethers is presented. It was possible, by a seeded-growth mechanism, to form colloidally stable, one-dimensional fibres with controllable lengths (from 400 to 1700â nm) and low dispersities (1.19-1.29) via a living supramolecular polymerisation process. Under the solvent conditions used, it was found that molecularly dissolved material (unimer) was present in samples of the fibre-like supramolecular assemblies. The free unimer may be present in a conformationally derived kinetically trapped state and/or may represent a more soluble PDI fraction with longer hydrophilic tethers. Significantly, it was also possible to form segmented supramolecular block copolymers by the addition of PDI unimer to chemically distinct PDI seeds, yielding fibres with controlled lengths. These results represent a significant advance in the ability to form PDI-based supramolecular polymers with precisely controlled lengths and architectures.
RESUMO
We present a newly developed approach to non-covalently address the packing parameter of an electroactive amphiphile. The pH-responsive reversible switching of a tetra(aniline)-based cationic amphiphile, TANI-pentyl trimethylammonium bromide (TANI-PTAB), between self-assembled vesicles and nanowires by acid/base chemistry in aqueous solution is used to exemplify this approach. Trifluoroacetic acid (TFA) was selected as a prototypical acid to form emeraldine salt (ES) state (TANI(TFA)2-PTAB) vesicles for this new class of small-molecule supramolecular amphiphiles. UV-vis-NIR spectroscopy, transmission electron microscopy (TEM), tapping-mode atomic force microscopy (AFM), and fluorescence spectroscopy were used to investigate the reversible structural transformation from vesicles to nanowires. We show that utilising different protonic acid-dopants for TANI-PTAB can regulate the packing parameter, and thus the final self-assembled structures, in a predictable fashion. We envisage potential application of this concept as smart and switchable delivery systems.
RESUMO
Antifreeze glycoproteins (AFGPs) are polymeric natural products that have drawn considerable interest in diverse research fields owing to their potent ice recrystallization inhibition (IRI) activity. Self-assembled materials have emerged as a promising class of biomimetic ice growth inhibitor, yet the development of AFGP-based supramolecular materials that emulate the aggregative behavior of AFGPs have not yet been reported. This work reports the first example of the 1D self-assembly and IRI activity of AFGP-functionalized perylene bisimides (AFGP-PBIs). Glycopeptide-functionalized PBIs underwent 1D self-assembly in water and showed modest IRI activity, which could be tuned through substitution of the PBI core. This work presents essential proof-of-principle for the development of novel IRIs as potential supramolecular cryoprotectants and glycoprotein mimics.
Assuntos
Proteínas Anticongelantes/química , Glicopeptídeos/química , Gelo , Imidas/química , Perileno/análogos & derivados , Água/química , Cristalização , Perileno/química , Multimerização Proteica , TermodinâmicaRESUMO
Nitrogen-rich conjugated microporous polymers (NCMPs) have attracted great attention in recent years owing to their polarity, basicity, and ability to coordinate metal ions. Herein, three NCMPs, structurally close to polyaniline, were facilely synthesized via chemical oxidative polymerization between multiconnected aniline precursors. The NCMPs with high N content (11.84 wt %), intrinsic ultramicroporosity (<1 nm), and moderate surface area (485 m2 g-1) show wide-ranging adsorption functionality, e.g., CO2 uptake (11 wt %) and CO2-selectivity over N2 (360, 1 bar), 1.0 wt % H2 storage, as well as 215 wt % iodine vapor uptake at ambient pressure. Moreover, these NCMPs act as support for palladium catalysts and can maintain >94% activity in Suzuki-Miyaura coupling reactions after six continuous runs.
RESUMO
The principle of control signal amplification is found in all actuation systems, from engineered devices through to the operation of biological muscles. However, current engineering approaches require the use of hard and bulky external switches or valves, incompatible with both the properties of emerging soft artificial muscle technology and those of the bioinspired robotic systems they enable. To address this deficiency a biomimetic molecular-level approach is developed that employs light, with its excellent spatial and temporal control properties, to actuate soft, pH-responsive hydrogel artificial muscles. Although this actuation is triggered by light, it is largely powered by the resulting excitation and runaway chemical reaction of a light-sensitive acid autocatalytic solution in which the actuator is immersed. This process produces actuation strains of up to 45% and a three-fold chemical amplification of the controlling light-trigger, realising a new strategy for the creation of highly functional soft actuating systems.
RESUMO
This corrects the article DOI: 10.1038/ncomms15909.