Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Acta Biomater ; 183: 61-73, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838911

RESUMO

Achieving precise spatiotemporal control over the release of proangiogenic factors is crucial for vasculogenesis, the process of de novo blood vessel formation. Although various strategies have been explored, there is still a need to develop cell-laden biomaterials with finely controlled release of proangiogenic factors at specific locations and time points. We report on the developed of a near-infrared (NIR) light-responsive collagen hydrogel comprised of gold nanorods (GNRs)-conjugated liposomes containing proangiogenic growth factors (GFs). We demonstrated that this system enables on-demand dual delivery of GFs at specific sites and over selected time intervals. Liposomes were strategically formulated to encapsulate either platelet-derived growth factor (PDGF) or vascular endothelial growth factor (VEGF), each conjugated to gold nanorods (GNRs) with distinct geometries and surface plasmon resonances at 710 nm (GNR710) and 1064 nm (GNR1064), respectively. Using near infrared (NIR) irradiation and two-photon (2P) luminescence imaging, we successfully demonstrated the independent release of PDGF from GNR710 conjugated liposomes and VEGF from GNR1064-conjugated liposomes. Our imaging data revealed rapid release kinetics, with localized PDGF released in approximately 4 min and VEGF in just 1 and a half minutes following NIR laser irradiation. Importantly, we demonstrated that the release of each GF could be independently triggered using NIR irradiation with the other GF formulation remaining retained within the liposomes. This light-responsive collagen hydrogels holds promise for various applications in regenerative medicine where the establishment of a guided vascular network is essential for the survival and integration of engineered tissues. STATEMENT OF SIGNIFICANCE: In this study, we have developed a light-responsive system with gold nanorods (GNRs)-conjugated liposomes in a collagen hydrogel, enabling precise dual delivery of proangiogenic growth factors (GFs) at specific locations and timepoints. Liposomes, containing platelet-derived growth factor (PDGF) or vascular endothelial growth factor (VEGF), release independently under near- infrared irradiation. This approach allows external activation of desired GF release, ensuring high cell viability. Each GF can be triggered independently, retaining the other within the liposomes. Beyond its application in establishing functional vascular networks, this dual delivery system holds promise as a universal platform for delivering various combinations of two or more GFs.


Assuntos
Ouro , Hidrogéis , Raios Infravermelhos , Lipossomos , Nanotubos , Fator A de Crescimento do Endotélio Vascular , Hidrogéis/química , Fator A de Crescimento do Endotélio Vascular/farmacologia , Ouro/química , Lipossomos/química , Nanotubos/química , Humanos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Animais , Camundongos
2.
J Eukaryot Microbiol ; 54(1): 18-21, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17300512

RESUMO

Trypanosoma brucei brucei is the causative agent of Nagana in cattle and can infect a wide range of mammals but is unable to infect humans because it is susceptible to the innate cytotoxic activity of normal human serum. A minor subfraction of human high-density lipoprotein (HDL), containing apolipoprotein A-I (APOA1), apolipoprotein L-I (APOL1) and haptoglobin-related protein (HPR) provides this innate protection against T. b. brucei infection. Both HPR and APOL1 are cytotoxic to T. b. brucei but their specific activities for killing increase several hundred-fold when assembled in the same HDL. This HDL is called trypanosome lytic factor (TLF) and kills T. b. brucei following receptor binding, endocytosis, and lysosomal localization. Trypanosome lytic factor is activated in the acidic lysosome and facilitates lysosomal membrane disruption. Lysosomal localization is necessary for T. b. brucei killing by TLF. Trypanosoma brucei rhodesiense, which is indistinguishable from T. b. brucei, is resistant to TLF killing and causes human African sleeping sickness. Human infectivity by T. b. rhodesiense correlates with the evolution of a human serum resistance associated protein (SRA) that is able to ablate TLF killing. When T. b. brucei is transfected with the SRA gene it becomes highly resistant to TLF and human serum. In the SRA transfected cells, intracellular trafficking of TLF is altered and TLF mainly localizes to a subset of SRA containing cytoplasmic vesicles but not to the lysosome. These findings indicate that the cellular distribution of TLF is influenced by SRA expression and may directly determine susceptibility.


Assuntos
Endocitose , Lipoproteínas HDL/imunologia , Glicoproteínas de Membrana/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/imunologia , Trypanosoma brucei rhodesiense/imunologia , Tripanossomíase Africana/imunologia , Animais , Antígenos de Neoplasias/imunologia , Apolipoproteína L1 , Apolipoproteínas/imunologia , Proteínas Sanguíneas/imunologia , Haptoglobinas/imunologia , Humanos , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Lisossomos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei rhodesiense/metabolismo
3.
Eukaryot Cell ; 5(8): 1276-86, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16896212

RESUMO

The host range of African trypanosomes is influenced by innate protective molecules in the blood of primates. A subfraction of human high-density lipoprotein (HDL) containing apolipoprotein A-I, apolipoprotein L-I, and haptoglobin-related protein is toxic to Trypanosoma brucei brucei but not the human sleeping sickness parasite Trypanosoma brucei rhodesiense. It is thought that T. b. rhodesiense evolved from a T. b. brucei-like ancestor and expresses a defense protein that ablates the antitrypanosomal activity of human HDL. To directly investigate this possibility, we developed an in vitro selection to generate human HDL-resistant T. b. brucei. Here we show that conversion of T. b. brucei from human HDL sensitive to resistant correlates with changes in the expression of the variant surface glycoprotein (VSG) and abolished uptake of the cytotoxic human HDLs. Complete transcriptome analysis of the HDL-susceptible and -resistant trypanosomes confirmed that VSG switching had occurred but failed to reveal the expression of other genes specifically associated with human HDL resistance, including the serum resistance-associated gene (SRA) of T. b. rhodesiense. In addition, we found that while the original active expression site was still utilized, expression of three expression site-associated genes (ESAG) was altered in the HDL-resistant trypanosomes. These findings demonstrate that resistance to human HDLs can be acquired by T. b. brucei.


Assuntos
Resistência a Medicamentos/genética , Lipoproteínas HDL/fisiologia , Glicoproteínas de Membrana/genética , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Humanos , Lipoproteínas HDL/genética , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/farmacologia , Dados de Sequência Molecular , Alinhamento de Sequência , Trypanosoma brucei brucei/efeitos dos fármacos , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA