Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Hum Neurosci ; 17: 1062064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36908707

RESUMO

Introduction: The cognitive map is an internal representation of the environment and allows us to navigate through familiar environments. It preserves the distances and directions between landmarks which help us orient ourselves in our surroundings. The aim of our task was to understand the role played by theta waves in the cognitive map and especially how the cognitive map is recalled and how the manipulation of distances and directions occurs within the cognitive map. Method: In order to investigate the neural correlates of the cognitive map, we used the Cognitive Map Recall Test, in which 33 participants had to estimate distances and directions between familiar landmarks tailored to their own knowledge. We examined the role of theta waves in the cognitive map, as well as the brain regions that generated them. To that aim, we performed electroencephalographic source imaging while focusing on frequency spectral analysis. Results: We observed increases of theta amplitude in the frontal, temporal, parahippocampal gyri and temporal poles during the recall of the cognitive map. We also found increases of theta amplitude in the temporal pole and retrosplenial cortex during manipulation of directions. Overall, direction processing induces higher theta amplitude than distance processing, especially in the temporal lobe, and higher theta amplitude during recall compared to manipulation, except in the retrosplenial cortex where this pattern was reversed. Discussion: We reveal the role of theta waves as a marker of directional processing in the retrosplenial cortex and the temporal poles during the manipulation of spatial information. Increases in theta waves in frontal, parahippocampal, temporal and temporal pole regions appear to be markers of working memory and cognitive map recall. Therefore, our Cognitive Map Recall Test could be useful for testing directional difficulties in patients. Our work also shows that there are two distinct parts to the cognitive map test: recall and manipulation of spatial information. This is often considered as two similar processes in the literature, but our work demonstrates that these processes could be different, with theta waves from different brain regions contributing to either recall or manipulation; this should be considered in future studies.

2.
Front Behav Neurosci ; 14: 130, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192354

RESUMO

Navigating toward a goal and mentally comparing distances and directions to landmarks are processes requiring reading information off the memorized representation of the environment, that is, the cognitive map. Brain structures in the medial temporal lobe, in particular, are known to be involved in the learning, storage, and retrieval of cognitive map information, which is generally assumed to be in allocentric form, whereby pure spatial relations (i.e., distance and direction) connect locations with each other. The authors recorded functional magnetic resonance imaging activity, while participants were submitted to a variant of a neuropsychological test (the Cognitive Map Reading Test; CMRT) originally developed to evaluate the performance of brain-lesioned patients and in which participants have to compare distances and directions in their mental map of their hometown. Our main results indicated posterior parahippocampal, but not hippocampal, activity, consistent with a task involving spatial memory of places learned a long time ago; left parietal and left frontal activity, consistent with the distributed processing of navigational representations; and, unexpectedly, cerebellar activity, possibly related to the role of the cerebellum in the processing of (here, imaginary) self-motion cues. In addition, direction, but not distance, comparisons elicited significant activation in the posterior parahippocampal gyrus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA