Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Hazard Mater ; 471: 134243, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38657506

RESUMO

Iron-magnetic nanoparticles (Fe-NMPs) are widely used in environmental remediation, while porphyrin-based hybrid materials anchored to silica-coated Fe3O4-nanoparticles (Fe3O4-NPs) have been used for water disinfection purposes. To assess their safety on plants, especially concerning potential environmental release, it was investigated for the first time, the impact on plants of a silica-coated Fe3O4-NPs bearing a porphyrinic formulation (FORM) - FORM@NMP. Additionally, FORM alone and the magnetic nanoparticles without FORM anchored (NH2@NMP) were used for comparison. Wheat (Triticum aestivum L.) was chosen as a model species and was subjected to three environmentally relevant doses during germination and tiller development through root application. Morphological, physiological, and metabolic parameters were assessed. Despite a modest biomass decrease and alterations in membrane properties, no major impairments in germination or seedling development were observed. During tiller phase, both Fe3O4-NPs increased leaf length, and photosynthesis exhibited varied impacts: both Fe3O4-NPs and FORM alone increased pigments; only Fe3O4-NPs promoted gas exchange; all treatments improved the photochemical phase. Regarding oxidative stress, lipid peroxidation decreased in FORM and FORM@NMP, yet with increased O2-• in FORM@NMP; total flavonoids decreased in NH2@NMP and antioxidant enzymes declined across all materials. Phenolic profiling revealed a generalized trend towards a decrease in flavones. In conclusion, these nanoparticles can modulate wheat physiology/metabolism without apparently inducing phytotoxicity at low doses and during short-time exposure. ENVIRONMENTAL IMPLICATION: Iron-magnetic nanoparticles are widely used in environmental remediation and fertilization, besides of new applications continuously being developed, making them emerging contaminants. Soil is a major sink for these nanoparticles and their fate and potential environmental risks in ecosystems must be addressed to achieve more sustainable environmental applications. Furthermore, as the reuse of treated wastewater for agricultural irrigation is being claimed, it is of major importance to disclose the impact on crops of the nanoparticles used for wastewater decontamination, such as those proposed in this work.


Assuntos
Germinação , Porfirinas , Triticum , Triticum/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Triticum/metabolismo , Germinação/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Nanopartículas de Magnetita/toxicidade , Nanopartículas de Magnetita/química , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Dióxido de Silício/toxicidade , Dióxido de Silício/química , Estresse Oxidativo/efeitos dos fármacos
2.
Int J Mol Sci ; 24(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37958951

RESUMO

Bacterial resistance to antibiotics is a critical global health issue and the development of alternatives to conventional antibiotics is of the upmost relevance. Antimicrobial photodynamic therapy (aPDT) is considered a promising and innovative approach for the photoinactivation of microorganisms, particularly in cases where traditional antibiotics may be less effective due to resistance or other limitations. In this study, two ß-modified monocharged porphyrin-imidazolium derivatives were efficiently incorporated into polyvinylpyrrolidone (PVP) formulations and supported into graphitic carbon nitride materials. Both porphyrin-imidazolium derivatives displayed remarkable photostability and the ability to generate cytotoxic singlet oxygen. These properties, which have an important impact on achieving an efficient photodynamic effect, were not compromised after incorporation/immobilization. The prepared PVP-porphyrin formulations and the graphitic carbon nitride-based materials displayed excellent performance as photosensitizers to photoinactivate methicillin-resistant Staphylococcus aureus (MRSA) (99.9999% of bacteria) throughout the antimicrobial photodynamic therapy. In each matrix, the most rapid action against S. aureus was observed when using PS 2. The PVP-2 formulation needed 10 min of exposure to white light at 5.0 µm, while the graphitic carbon nitride hybrid GCNM-2 required 20 min at 25.0 µm to achieve a similar level of response. These findings suggest the potential of graphitic carbon nitride-porphyrinic hybrids to be used in the environmental or clinical fields, avoiding the use of organic solvents, and might allow for their recovery after treatment, improving their applicability for bacteria photoinactivation.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Fotoquimioterapia , Porfirinas , Staphylococcus aureus , Porfirinas/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Antibacterianos/farmacologia , Povidona/farmacologia
3.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232850

RESUMO

The laboratorial available methods applied in plasma disinfection can induce damage in other blood components. Antimicrobial photodynamic therapy (aPDT) represents a promising approach and is approved for plasma and platelet disinfection using non-porphyrinic photosensitizers (PSs), such as methylene blue (MB). In this study, the photodynamic action of three cationic porphyrins (Tri-Py(+)-Me, Tetra-Py(+)-Me and Tetra-S-Py(+)-Me) towards viruses was evaluated under white light irradiation at an irradiance of 25 and 150 mW·cm-2, and the results were compared with the efficacy of the approved MB. None of the PSs caused hemolysis at the isotonic conditions, using a T4-like phage as a model of mammalian viruses. All porphyrins were more effective than MB in the photoinactivation of the T4-like phage in plasma. Moreover, the most efficient PS promoted a moderate inactivation rate of the T4-like phage in whole blood. Nevertheless, these porphyrins, such as MB, can be considered promising and safe PSs to photoinactivate viruses in blood plasma.


Assuntos
Anti-Infecciosos , Bacteriófagos , Fotoquimioterapia , Porfirinas , Azul de Metileno/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia
4.
Microorganisms ; 10(6)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35744685

RESUMO

Corroles possess key photophysical and photochemical properties to be exploited as therapeutic agents in antimicrobial photodynamic therapy (aPDT). Herein, we present for the first time the antimicrobial efficiency of three corrole dimers and of the corresponding precursor against the Gram(+) bacterium Staphylococcus aureus. Additionally, to explore future clinical applications, the cytotoxicity of the most promising derivatives towards Vero cells was evaluated. The aPDT assays performed under white light irradiation (50 mW/cm2; light dose 450 J/cm2) and at a corrole concentration of 15 µM showed that some dimers were able to reduce 99.9999% of S. aureus strain (decrease of 5 log10 CFU/mL) and their photodynamic efficiency was dependent on position, type of linkage, and aggregation behavior. Under the same light conditions, the corrole precursor 1 demonstrated notable photodynamic efficiency, achieving total photoinactivation (>8.0 log10 CFU/mL reduction) after the same period of irradiation (light dose 450 J/cm2). No cytotoxicity was observed when Vero cells were exposed to corrole 1 and dimer 3 for 24 h according to ISO guidelines (ISO 10993-5) for in vitro cytotoxicity of medical devices. The results show that corrole dimers, dependent on their structures, can be considered good photosensitizers to kill Staphylococcus aureus.

5.
J Photochem Photobiol B ; 233: 112502, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35759946

RESUMO

The photodynamic inactivation (PDI) of microorganisms has gained interest as an efficient option for conventional antibiotic treatments. Recently, Si(IV) phthalocyanines (SiPcs) have been highlighted as promising photosensitizers (PSs) to the PDI of microorganisms due to their remarkable absorption and emission features. To increase the potential of cationic SiPcs as PS drugs, one novel (1a) and two previously described (2a and 3a) axially substituted PSs with di-, tetra-, and hexa-ammonium units, respectively, were synthesized and characterized. Their PDI effect was evaluated for the first time against Escherichia coli and Staphylococcus aureus, a Gram-negative and a Gram-positive bacterium, respectively. The photodynamic treatments were conducted with PS concentrations of 3.0 and 6.0 µM under 60 min of white light irradiation (150 mW.cm-2). The biological results show high photodynamic efficiency for di- and tetra-cationic PSs 1a and 2a (6.0 µM), reducing the E. coli viability in 5.2 and 3.9 log, respectively (after 15 min of dark incubation before irradiation). For PS 3a, a similar bacterial reduction (3.6 log) was achieved but only with an extended dark incubation period (30 min). Under the same experimental conditions, the photodynamic effect of cationic PSs 1a-3a on S. aureus was even more promising, with abundance reductions of ca. 8.0 log after 45-60 min of PDI treatment. These results reveal the high PDI efficiency of PSs bearing ammonium groups and suggest their promising application as a broad-spectrum antimicrobial to control infections caused by Gram-negative and Gram-positive bacteria.


Assuntos
Compostos de Amônio , Fotoquimioterapia , Porfirinas , Compostos de Amônio/farmacologia , Antibacterianos/farmacologia , Escherichia coli , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Indóis/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Staphylococcus aureus
6.
Methods Mol Biol ; 2451: 631-669, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35505039

RESUMO

The emergence of microbial resistance to antimicrobials among several common pathogenic microbial strains is an increasing problem worldwide. Thus, it is urgent to develop not only new antimicrobial therapeutics to fight microbial infections, but also new effective, rapid, and inexpensive methods to monitor the efficacy of these new therapeutics. Antimicrobial photodynamic therapy (aPDT) and antimicrobial blue light (aBL) therapy are receiving considerable attention for their antimicrobial potential and represent realistic alternatives to antibiotics. To monitor the photoinactivation process provided by aPDT and aBL, faster and more effective methods are required instead of laborious conventional plating and overnight incubation procedures. Bioluminescent microbial models are very interesting in this context. Light emission from bioluminescent microorganisms is a highly sensitive indication of their metabolic activity and can be used to monitor, in real time, the effects of antimicrobial agents and therapeutics. This chapter reviews the efforts of the scientific community concerning the development of in vitro, ex vivo, and in vivo bioluminescent bacterial models and their potential to evaluate the efficiency of aPDT and aBL in the inactivation of bacteria.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias , Testes Imunológicos , Fotoquimioterapia/métodos
7.
Microorganisms ; 10(4)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35456769

RESUMO

Photodynamic action has been used for diverse biomedical applications, such as treating a broad range of bacterial infections. Based on the combination of light, dioxygen, and photosensitizer (PS), the photodynamic inactivation (PDI) approach led to the formation of reactive oxygen species (ROS) and represented a non-invasive, non-toxic, repeatable procedure for pathogen photoinactivation. To this end, different tetrapyrrolic macrocycles, such as porphyrin (Por) dyes, have been used as PSs for PDI against microorganisms, mainly bacteria. Still, there is significant room for improvement, especially new PS molecules. Herein, unsymmetrical new pyridinone (3−5) and thiopyridyl Pors (7) were prepared with α-, ß-, or γ-cyclodextrin (CD) units, following their quaternization to perform the corresponding free-base Pors (3a−5a and 7a), and were compared with the already-known Pors 6a and 8a, both bearing thiopyridinium and CD units. These water-soluble porphyrins were evaluated as PSs, and their photophysical and photochemical properties and photodynamic effects on E. coli were assessed. The presence of one CD unit and three positive charges on the Por structure (3a−5a and 7a) enhanced their aqueous solubility. The photoactivity of the cationic Pors 3a−5a and 6a−8a ensured their potential against the Gram-negative bacterium E. coli. Within each series of methoxypyridinium vs thiopyridinium dyes, the best PDI efficiency was achieved for 5a with a bacterial viability reduction of 3.5 log10 (50 mW cm−2, 60 min of light irradiation) and for 8a with a total bacterial viability reduction (>8 log10, 25 mW cm−2, 30 min of light irradiation). Here, the presence of the methoxypyridinium units is less effective against E. coli when compared with the thiopyridinium moieties. This study allows for the conclusion that the peripheral charge position, quaternized substituent type/CD unit, and affinity to the outer bacterial structures play an important role in the photoinactivation efficiency of E. coli, evidencing that these features should be further addressed in the pursuit for optimised PS for the antimicrobial PDI of pathogenic microorganisms.

8.
Pharmaceutics ; 13(9)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34575587

RESUMO

The development of new photodynamic therapy (PDT) agents designed for bladder cancer (BC) treatments is of utmost importance to prevent its recurrence and progression towards more invasive forms. Here, three different porphyrinic photosensitizers (PS) (TMPyP, Zn-TMPyP, and P1-C5) were non-covalently loaded onto graphene oxide (GO) or graphene quantum dots (GQDs) in a one-step process. The cytotoxic effects of the free PS and of the corresponding hybrids were compared upon blue (BL) and red-light (RL) exposure on T24 human BC cells. In addition, intracellular reactive oxygen species (ROS) and singlet oxygen generation were measured. TMPyP and Zn-TMPyP showed higher efficiency under BL (IC50: 0.42 and 0.22 µm, respectively), while P1-C5 was more active under RL (IC50: 0.14 µm). In general, these PS could induce apoptotic cell death through lysosomes damage. The in vitro photosensitizing activity of the PS was not compromised after their immobilization onto graphene-based nanomaterials, with Zn-TMPyP@GQDs being the most promising hybrid system under RL (IC50: 0.37 µg/mL). Overall, our data confirm that GO and GQDs may represent valid platforms for PS delivery, without altering their performance for PDT on BC cells.

9.
J Photochem Photobiol B ; 223: 112301, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34492530

RESUMO

Prostate cancer (PCa) is the second most frequent cancer diagnosed in men worldwide. Among the common treatment options, photodynamic therapy (PDT) is being considered a promising local therapy to treat this cancer. Although PDT is an established treatment modality approved for several types of cancer, the low solubility, the reduced tumor selectivity, the absorption in the therapeutic window and the poor clearance from the body of the currently approved photosensitizers (PS) hampers its wide clinical application. In this regard, herein we synthesized three fluorinated porphyrinoid derivatives and entrapped them into polyvinylpyrrolidone (PVP) to prevent their aggregation and preserve their desirable photophysical properties under the physiological environment. In vitro studies revealed the negligible dark cytotoxicity of all PVP formulations (PS1@PVP, PS2@PVP and PS3@PVP) at the tested concentrations (5.0 to 20 µM), but also confirmed the significant photodynamic effect of PS2@PVP and PS3@PVP towards the PCa cell line PC-3, upon red light irradiation at an irradiance of 17.6 mW.cm-2. To provide insight into the underlying mechanisms of cell death under PDT treatment induced by PS2@PVP and PS3@PVP, their intracellular localization in PC-3 cells was firstly investigated by confocal microscopy. Since both PS2@PVP and PS3@PVP nanoparticles were mainly localized in mitochondria, the involvement of this organelle in PDT-induced apoptosis mediated by both formulations was further explored. Western blot analysis revealed that PDT treatment of PC-3 cells with either PS2@PVP or PS3@PVP resulted in the reduction of the expression level of the anti-apoptotic protein Bcl-2. As the photodamage to Bcl-2 after PDT with PS2@PVP and PS3@PVP was accompanied by the further activation of pro-caspase-3, we assumed that upon irradiation the photogenerated reactive oxygen species (ROS) were able to activate a caspase-dependent apoptotic response as a consequence of a post-mitochondrial event. Taken together, these findings demonstrate that among the tested fluorinated porphyrinoids, PS2@PVP and, particularly, PS3@PVP, are significantly more effective in overall PC-3 cell killing than PS1@PVP, thus highlighting their great potential as therapeutic agents for PCa.


Assuntos
Apoptose/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Composição de Medicamentos , Humanos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Nanopartículas/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/química , Porfirinas/uso terapêutico , Povidona/química , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
J Photochem Photobiol B ; 222: 112258, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34399205

RESUMO

Photodynamic therapy (PDT) is an approved therapeutic approach and an alternative to conventional chemotherapy for the treatment of several types of cancer with the advantages of reducing the side effects and developing resistance mechanisms. Here, was evaluated the photosensitization capabilities of 5,10,15,20-tetrakis[4-(pyridinium-1-yl-methyl)phenyl]porphyrin (3), its N-confused isomer (4) and of the neutral precursors (1) and (2) and the results were compared with the ones obtained with the cationic 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin (TMPyP). Both regular porphyrin derivatives 1 and 3 showed higher efficiency to generate singlet oxygen than TMPyP. The PDT assays towards MCF-7 cells under red light irradiation (λ > 640 nm, 23.7 mW cm-2) demonstrated that the cationic porphyrin 3 is an efficient photosensitizer to kill MCF-7 breast cancer cells. The study of the cell death mechanisms induced by the photodynamic process showed that the studied porphyrin 3 and TMPyP caused cell death by autophagic flux and necrosis.


Assuntos
Apoptose/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Apoptose/efeitos da radiação , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Feminino , Humanos , Luz , Células MCF-7 , Microscopia Confocal , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/química , Porfirinas/uso terapêutico , Oxigênio Singlete/metabolismo
11.
ACS Appl Bio Mater ; 4(6): 4925-4935, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35007041

RESUMO

Melanoma is the most dangerous form of skin cancer, with an abrupt growth of its incidence over the last years. It is extremely resistant to traditional treatments such as chemotherapy and radiotherapy, but therapies for this cancer are gaining attention. Photodynamic therapy (PDT) is considered an effective modality to treat several types of skin cancers and can offer the possibility to treat one of the most aggressive ones: melanoma. In this work, the effect of PDT on a melanotic cell line (B16F10 cells) was assessed by exposing cultured cells to 5,10,15-tris(pentafluorophenyl)-20-(4-pyridyl)porphyrin (PS1) and to its chlorin (PS2) and isobacteriochlorin (PS3) corresponding derivatives and red LED light (λ = 660 ± 20 nm). The PDT effect in the cells' viability was measured using the MTT assay. The cell apoptosis was quantified by flow cytometry, and the subcellular localization of the photosensitizer was determined by fluorescence microscopy. In addition, the ability of PS2 to generate superoxide radicals was qualitatively assessed by tyrosine nitration. The results show that the efficiency of the PDT process is dependent on the structure of the PS and on their ability to produce singlet oxygen. Besides that, the photoactivation efficiency is highly dependent on the cellular sublocalization of the PS and on its cellular uptake and singlet oxygen production. We also found that the resistant cell line B16F10 has distinctive chlorin, isobacteriochlorin, or porphyrin-specific resistance profiles. Furthermore, it is shown that the highly fluorescent chlorin derivative PS2 can also be considered in imaging diagnostics.


Assuntos
Melanoma/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/administração & dosagem , Porfirinas/administração & dosagem , Neoplasias Cutâneas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/efeitos da radiação , Porfirinas/química , Porfirinas/efeitos da radiação , Oxigênio Singlete/metabolismo
12.
Int J Food Microbiol ; 333: 108803, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32798958

RESUMO

Alicyclobacillus acidoterrestris is a cause of major concern for the orange juice industry due to its thermal and chemical resistance, as well as its spoilage potential. A. acidoterrestris spoilage of orange juice is due to off-flavor taints from guaiacol production and some halophenols. The present study aimed to evaluate the effectiveness of antimicrobial Photodynamic Treatment (aPDT) as an emerging technology to inactivate the spores of A. acidoterrestris. The aPDT efficiency towards A. acidoterrestris was evaluated using as photosensitizers the tetracationic porphyrin (Tetra-Py+-Me) and the phenothiazinium dye new methylene blue (NMB) in combination with white light-emitting diode (LED; 400-740 nm; 65-140 mW/cm2). The spores of A. acidoterrestris were cultured on YSG agar plates (pH 3.7 ± 0.1) at 45 °C for 28 days and submitted to the aPDT with Tetra-Py+-Me and NMB at 10 µM in phosphate-buffered saline (PBS) in combination with white light (140 mW/cm2). The use of Tetra-Py+-Me at 10 µM resulted in a 7.3 ± 0.04 log reduction of the viability of A. acidoterrestris spores. No reductions in the viability of this bacterium were observed with NMB at 10 µM. Then, the aPDT with Tetra-Py+-Me and NMB at 10 µM in orange juice (UHT; pH 3.9; 11°Brix) alone and combined with potassium iodide (KI) was evaluated. The presence of KI was able to potentiate the aPDT process in orange juice, promoting the inactivation of 5 log CFU/mL of A. acidoterrestris spores after 10 h of white light exposition (140 mW/cm2). However, in the absence of KI, both photosensitizers did not promote a significant reduction in the spore viability. The inactivation of A. acidoterrestris spores artificially inoculated in orange peels (105 spores/mL) was also assessed using Tetra-Py+-Me at 10 and 50 µM in the presence and absence of KI in combination with white light (65 mW/cm2). No significant reductions were observed (p < .05) when Tetra-Py+-Me was used at 10 µM, however at the highest concentration (50 µM) a significant spore reduction (≈ 2.8 log CFU/mL reductions) in orange peels was observed after 6 h of sunlight exposition (65 mW/cm2). Although the color, total phenolic content (TPC), and antioxidant capacity of orange juice and peel (only color evaluation) seem to have been affected by light exposition, the impact on the visual and nutritional characteristics of the products remains inconclusive so far. Besides that, the results found suggest that aPDT can be a potential method for the reduction of A. acidoterrestris spores on orange groves.


Assuntos
Alicyclobacillus/efeitos da radiação , Citrus sinensis/microbiologia , Sucos de Frutas e Vegetais/microbiologia , Luz , Fármacos Fotossensibilizantes/farmacologia , Antibacterianos/farmacologia , Guaiacol , Azul de Metileno/análogos & derivados , Azul de Metileno/farmacologia , Porfirinas/farmacologia , Esporos Bacterianos/efeitos da radiação
13.
Chem Biodivers ; 17(10): e2000316, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32662235

RESUMO

Spartina maritima and Puccinellia maritima are two fascinating but underexplored halophytic species, and herein, the chemical profile of their hexane extracts is described. Terpenoids and sterols were the most abundant chemical groups in both species. The second dominant class was alcohols and the third esters of fatty acids. The chemical lipophilic profile of both S. maritima and P. maritima is herein reported for the first time. Through the accomplished data, it is possible to conclude that these species are rich in essential compounds that can be relevant to endorse their use as nutraceuticals. Furthermore, through a principal component analysis, a clear differentiation between the taxa was achieved, which indicates that their response to salinity stress is different. That fact was confirmed by the pathway enrichment analysis, which showed that the induced changes in metabolic pathways vary in each species.


Assuntos
Poaceae/fisiologia , Análise de Componente Principal , Salinidade , Tolerância ao Sal , Especificidade da Espécie
14.
Photodiagnosis Photodyn Ther ; 31: 101788, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32479904

RESUMO

Photodynamic inactivation (PDI) of microorganisms has been used for the treatment of bacterial infection. PDI is based on the combination of three non-toxic elements: a photosensitizer (PS), light and molecular oxygen, which lead to the formation of reactive oxygen species (ROS) that cause lethal oxidative damage into the target pathogenic bacteria. For that, clinical approved tetrapyrrolic macrocycles, with particular emphasis on photoactive porphyrin (Por) dyes, have been used as PS in PDI for different biomedical applications. Two novel unsymmetrical free-base thiopyridyl Pors conjugated with α- or γ-CD units (Pors 2 and 3) were prepared and the corresponding cationic ones (Pors 2a and 3a) were assessed as water-soluble photosensitizer (PS) agents by photophysical, photochemical and E. coli photobiological studies. The presence of the CD unit and the positive charges on the Por periphery (2a and 3a) enhance their solubility in aqueous media. The photoactivity of the two cationic Pors 2a and 3a ensures their potential as PDI drugs against Gram-negative bacteria model, a bioluminescent E. coli, which the best PDI efficiency was determined for Por 3a that achieved the highest bacterial reduction of 4.0 log10 (ANOVA, p < 0.0001), reaching the detection limit of the method after 15 min.


Assuntos
Ciclodextrinas , Fotoquimioterapia , Porfirinas , Ciclodextrinas/farmacologia , Escherichia coli , Luz , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia
15.
Bioorg Chem ; 101: 103994, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32569896

RESUMO

The synthesis of new porphyrin-indazole hybrids by a Knoevenagel condensation of 2-formyl-5,10,15,20-tetraphenylporphyrin and N-methyl-nitroindazolylacetonitrile derivatives is reported. The target compounds were isolated in moderate to good yields (32-57%) and some of the isolated porphyrin-indazole conjugates showed good performance in the generation of singlet oxygen when irradiated with visible light. Their efficiency as photosensitizers in the photoinactivation of methicillin resistant Staphylococcus aureus-MRSA was evaluated. All derivatives showed to be able to photoinactivate the MRSA bacteria. Compound 3a appears to be the most promising photosensitiser (PS) in the photoinactivation of these bacteria, despite being the least efficient in singlet oxygen generation. The addition of potassium iodide (KI) significantly potentiated the antimicrobial Photodynamic Therapy (aPDT) process mediated by all the analysed porphyrin-indazole conjugates. The combined action of nitroindazole-porphyrins with potassium iodide (KI) action appears to be promising in the photoinactivation of MRSA.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Indazóis/química , Indazóis/farmacologia , Porfirinas/química , Porfirinas/farmacologia , Antibacterianos/síntese química , Indazóis/síntese química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Fotoquimioterapia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/síntese química , Oxigênio Singlete/química , Análise Espectral/métodos
16.
Molecules ; 25(7)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290240

RESUMO

The reaction between organic azides and alkyne derivatives via the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) is an efficient strategy to combine phthalocyanines and analogues with different materials. As examples of such materials, it can be considered the following ones: graphene oxide, carbon nanotubes, silica nanoparticles, gold nanoparticles, and quantum dots. This approach is also being relevant to conjugate phthalocyanines with carbohydrates and to obtain new sophisticated molecules; in such way, new systems with significant potential applications become available. This review highlights recent developments on the synthesis of phthalocyanine, subphthalocyanine, and porphyrazine derivatives where CuAAC reactions are the key synthetic step.


Assuntos
Azidas/química , Indóis/química , Azidas/síntese química , Catálise , Técnicas de Química Sintética , Química Click , Eletrodos , Indóis/síntese química , Isoindóis , Estrutura Molecular , Polímeros/química
17.
Molecules ; 25(7)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260294

RESUMO

Azides and porphyrinoids (such as porphyrin and corrole macrocycles) can give rise to new derivatives with significant biological properties and as new materials' components. Significant synthetic approaches have been studied. A wide range of products (e.g., microporous organic networks, rotaxane and dendritic motifs, dendrimers as liquid crystals, as blood substitutes for transfusions and many others) can now be available and used for several medicinal and industrial purposes.


Assuntos
Azidas/química , Porfirinas/química , Estrutura Molecular
18.
Antibiotics (Basel) ; 8(4)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766190

RESUMO

The few approved disinfection techniques for blood derivatives promote damage in the blood components, representing risks for the transfusion receptor. Antimicrobial photodynamic therapy (aPDT) seems to be a promising approach for the photoinactivation of pathogens in blood, but only three photosensitizers (PSs) have been approved, methylene blue (MB) for plasma and riboflavin and amotosalen for plasma and platelets. In this study, the efficiency of the porphyrinic photosensitizer Tri-Py(+)-Me and of the porphyrinic formulation FORM was studied in the photoinactivation of Candida albicans in plasma and in whole blood and the results were compared to the ones obtained with the already approved PS MB. The results show that FORM and Tri-Py(+)-Me are promising PSs to inactivate C. albicans in plasma. Although in whole blood the inactivation rates obtained were higher than the ones obtained with MB, further improvements are required. None of these PSs had promoted hemolysis at the isotonic conditions when hemolysis was evaluated in whole blood and after the addition of treated plasma with these PSs to concentrates of red blood cells.

19.
Molecules ; 24(20)2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31652513

RESUMO

Halophytic grasses have been recently targeted as possible sources of nutraceutical and medicinal compounds. Nonetheless, few studies have been conducted on the phytochemistry and biological activities of metabolites produced by these plants. Among these, Spartina maritima (Curtis) Fernald, Spartina patens (Aiton.) Muhl., and Puccinellia maritima (Hudson) Parl. are three halophytic grasses whose chemical composition and bioactivities are unknown. The present work broadens the knowledge on the polyphenolic and chlorophyll composition of these species identifying for the first time hydroxycinnamic acids and their derivatives, flavones, flavonols, lignans, as well as chlorophylls and xantophylls. The extracts were particularly rich in caffeic and ferulic acids as well as in trihydroxymethoxyflavone, apigenin and tricin derivatives. Interestingly, several of the identified compounds are relevant from a medicinal and nutraceutical point of view putting in evidence the potential of these species. Thus, the antioxidant, anti-acetylcholinesterase, antibacterial, and antifungal activities of the polyphenolic extracts were assessed as well as the photophysical properties of the chlorophyll-rich extracts. The results, herein presented for the first time, reinforce the nutritional and the medicinal potential of these halophytic grasses.


Assuntos
Clorofila/química , Extratos Vegetais/química , Poaceae/química , Polifenóis/química , Plantas Tolerantes a Sal/química , Acetilcolinesterase/farmacologia , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antioxidantes/metabolismo , Clorofila/análise , Clorofila/isolamento & purificação , Inibidores da Colinesterase/farmacologia , Cromatografia Líquida de Alta Pressão , Ácidos Cumáricos/análise , Ácidos Cumáricos/química , Suplementos Nutricionais , Flavonas/análise , Flavonas/química , Flavonoides/análise , Flavonoides/química , Flavonóis/análise , Flavonóis/química , Sequestradores de Radicais Livres/metabolismo , Lignanas/análise , Lignanas/química , Plantas Medicinais/química , Poaceae/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Xantofilas/análise , Xantofilas/química
20.
Photochem Photobiol Sci ; 18(8): 1910-1922, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31328761

RESUMO

New porphyrin/4-oxoquinoline conjugates were synthesized from the Heck coupling reaction of a ß-brominated porphyrin with 1-allyl-4-oxoquinoline derivatives, followed by demetallation and deprotection affording the promising photosensitizers 9a-e. Singlet oxygen studies have demonstrated that all the porphyrin/4-oxoquinoline conjugates 9a-e were capable of producing cytotoxic species and found to be excellent photosensitizing agents in the inactivation of S. aureus by the antimicrobial photodynamic therapy (aPDT) protocol.


Assuntos
4-Quinolonas/farmacologia , Antibacterianos/farmacologia , Fotoquimioterapia , Porfirinas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , 4-Quinolonas/química , Antibacterianos/síntese química , Antibacterianos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Porfirinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA