Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Elife ; 122023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37991493

RESUMO

Changes in an organism's environment, genome, or gene expression patterns can lead to changes in its metabolism. The metabolic phenotype can be under selection and contributes to adaptation. However, the networked and convoluted nature of an organism's metabolism makes relating mutations, metabolic changes, and effects on fitness challenging. To overcome this challenge, we use the long-term evolution experiment (LTEE) with E. coli as a model to understand how mutations can eventually affect metabolism and perhaps fitness. We used mass spectrometry to broadly survey the metabolomes of the ancestral strains and all 12 evolved lines. We combined this metabolic data with mutation and expression data to suggest how mutations that alter specific reaction pathways, such as the biosynthesis of nicotinamide adenine dinucleotide, might increase fitness in the system. Our work provides a better understanding of how mutations might affect fitness through the metabolic changes in the LTEE and thus provides a major step in developing a complete genotype-phenotype map for this experimental system.


Assuntos
Adaptação Fisiológica , Escherichia coli , Escherichia coli/genética , Fenótipo , Genótipo , Mutação , Adaptação Fisiológica/genética , Evolução Molecular
2.
Nat Commun ; 14(1): 6025, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758766

RESUMO

Abnormalities in neocortical and synaptic development are linked to neurodevelopmental disorders. However, the molecular and cellular mechanisms governing initial synapse formation in the prenatal neocortex remain poorly understood. Using polysome profiling coupled with snRNAseq on human cortical samples at various fetal phases, we identify human mRNAs, including those encoding synaptic proteins, with finely controlled translation in distinct cell populations of developing frontal neocortices. Examination of murine and human neocortex reveals that the RNA binding protein and translational regulator, CELF4, is expressed in compartments enriched in initial synaptogenesis: the marginal zone and the subplate. We also find that Celf4/CELF4-target mRNAs are encoded by risk genes for adverse neurodevelopmental outcomes translating into synaptic proteins. Surprisingly, deleting Celf4 in the forebrain disrupts the balance of subplate synapses in a sex-specific fashion. This highlights the significance of RNA binding proteins and mRNA translation in evolutionarily advanced synaptic development, potentially contributing to sex differences.


Assuntos
Proteínas CELF , Neocórtex , Animais , Feminino , Humanos , Masculino , Camundongos , Gravidez , Neocórtex/metabolismo , Neurônios/metabolismo , Polirribossomos/metabolismo , Biossíntese de Proteínas , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Sinapses/metabolismo , Proteínas CELF/genética , Proteínas CELF/metabolismo
4.
Commun Biol ; 6(1): 406, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055518

RESUMO

Accurate identification of NAD-capped RNAs is essential for delineating their generation and biological function. Previous transcriptome-wide methods used to classify NAD-capped RNAs in eukaryotes contain inherent limitations that have hindered the accurate identification of NAD caps from eukaryotic RNAs. In this study, we introduce two orthogonal methods to identify NAD-capped RNAs more precisely. The first, NADcapPro, uses copper-free click chemistry and the second is an intramolecular ligation-based RNA circularization, circNC. Together, these methods resolve the limitations of previous methods and allowed us to discover unforeseen features of NAD-capped RNAs in budding yeast. Contrary to previous reports, we find that 1) cellular NAD-RNAs can be full-length and polyadenylated transcripts, 2) transcription start sites for NAD-capped and canonical m7G-capped RNAs can be different, and 3) NAD caps can be added subsequent to transcription initiation. Moreover, we uncovered a dichotomy of NAD-RNAs in translation where they are detected with mitochondrial ribosomes but minimally on cytoplasmic ribosomes indicating their propensity to be translated in mitochondria.


Assuntos
NAD , Capuzes de RNA , Capuzes de RNA/genética , NAD/metabolismo , Eucariotos/metabolismo , Transcriptoma , Ribossomos/genética , Ribossomos/metabolismo
5.
bioRxiv ; 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-36874203

RESUMO

Changes in an organism's environment, genome, or gene expression patterns can lead to changes in its metabolism. The metabolic phenotype can be under selection and contributes to adaptation. However, the networked and convoluted nature of an organism's metabolism makes relating mutations, metabolic changes, and effects on fitness challenging. To overcome this challenge, we use the Long-Term Evolution Experiment (LTEE) with E. coli as a model to understand how mutations can eventually affect metabolism and perhaps fitness. We used mass-spectrometry to broadly survey the metabolomes of the ancestral strains and all 12 evolved lines. We combined this metabolic data with mutation and expression data to suggest how mutations that alter specific reaction pathways, such as the biosynthesis of nicotinamide adenine dinucleotide, might increase fitness in the system. Our work provides a better understanding of how mutations might affect fitness through the metabolic changes in the LTEE and thus provides a major step in developing a complete genotype-phenotype map for this experimental system.

6.
Nat Commun ; 13(1): 6168, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36257965

RESUMO

Actively dividing cells, including some cancers, rely on aerobic glycolysis rather than oxidative phosphorylation to generate energy, a phenomenon termed the Warburg effect. Constitutive activation of the Hypoxia Inducible Factor (HIF-1), a transcription factor known for mediating an adaptive response to oxygen deprivation (hypoxia), is a hallmark of the Warburg effect. HIF-1 is thought to promote glycolysis and suppress oxidative phosphorylation. Here, we instead show that HIF-1 can promote gluconeogenesis. Using a multiomics approach, we reveal the genomic, transcriptomic, and metabolomic landscapes regulated by constitutively active HIF-1 in C. elegans. We use RNA-seq and ChIP-seq under aerobic conditions to analyze mutants lacking EGL-9, a key negative regulator of HIF-1. We integrate these approaches to identify over two hundred genes directly and functionally upregulated by HIF-1, including the PEP carboxykinase PCK-1, a rate-limiting mediator of gluconeogenesis. This activation of PCK-1 by HIF-1 promotes survival in response to both oxidative and hypoxic stress. Our work identifies functional direct targets of HIF-1 in vivo, comprehensively describing the metabolome induced by HIF-1 activation in an organism.


Assuntos
Caenorhabditis elegans , Gluconeogênese , Animais , Caenorhabditis elegans/genética , Gluconeogênese/genética , Fatores de Transcrição/genética , Hipóxia Celular , Hipóxia/genética , Oxigênio , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética
7.
Am J Physiol Gastrointest Liver Physiol ; 323(6): G571-G585, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36194131

RESUMO

Colorectal cancer (CRC) is a leading cause of cancer-related death. There is an urgent need for new methods of early CRC detection and monitoring to improve patient outcomes. Extracellular vesicles (EVs) are secreted, lipid-bilayer bound, nanoparticles that carry biological cargo throughout the body and in turn exhibit cancer-related biomarker potential. RNA binding proteins (RBPs) are posttranscriptional regulators of gene expression that may provide a link between host cell gene expression and EV phenotypes. Insulin-like growth factor 2 RNA binding protein 1 (IGF2BP1/IMP1) is an RBP that is highly expressed in CRC with higher levels of expression correlating with poor prognosis. IMP1 binds and potently regulates tumor-associated transcripts that may impact CRC EV phenotypes. Our objective was to test whether IMP1 expression levels impact EV secretion and/or cargo. We used RNA sequencing, in vitro CRC cell lines, ex vivo colonoid models, and xenograft mice to test the hypothesis that IMP1 influences EV secretion and/or cargo in human CRC. Our data demonstrate that IMP1 modulates the RNA expression of transcripts associated with extracellular vesicle pathway regulation, but it has no effect on EV secretion levels in vitro or in vivo. Rather, IMP1 appears to affect EV regulation by directly entering EVs in a transformation-dependent manner. These findings suggest that IMP1 has the ability to shape EV cargo in human CRC, which could serve as a diagnostic/prognostic circulating tumor biomarker.NEW & NOTEWORTHY This work demonstrates that the RNA binding protein IGF2BP1/IMP1 alters the transcript profile of colorectal cancer cell (CRC) mRNAs from extracellular vesicle (EV) pathways. IMP1 does not alter EV production or secretion in vitro or in vivo, but rather enters CRC cells where it may further impact EV cargo. Our work shows that IMP1 has the ability to shape EV cargo in human CRC, which could serve as a diagnostic/prognostic circulating tumor biomarker.


Assuntos
Neoplasias Colorretais , Vesículas Extracelulares , Humanos , Camundongos , Animais , Vesículas Extracelulares/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA Mensageiro/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/patologia
8.
Elife ; 112022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36214449

RESUMO

Organisms can adapt to an environment by taking multiple mutational paths. This redundancy at the genetic level, where many mutations have similar phenotypic and fitness effects, can make untangling the molecular mechanisms of complex adaptations difficult. Here, we use the Escherichia coli long-term evolution experiment (LTEE) as a model to address this challenge. To understand how different genomic changes could lead to parallel fitness gains, we characterize the landscape of transcriptional and translational changes across 12 replicate populations evolving in parallel for 50,000 generations. By quantifying absolute changes in mRNA abundances, we show that not only do all evolved lines have more mRNAs but that this increase in mRNA abundance scales with cell size. We also find that despite few shared mutations at the genetic level, clones from replicate populations in the LTEE are remarkably similar in their gene expression patterns at both the transcriptional and translational levels. Furthermore, we show that the majority of the expression changes are due to changes at the transcriptional level with very few translational changes. Finally, we show how mutations in transcriptional regulators lead to consistent and parallel changes in the expression levels of downstream genes. These results deepen our understanding of the molecular mechanisms underlying complex adaptations and provide insights into the repeatability of evolution.


The reason we look like our parents is because we inherit their genes. Genes carry the instructions for our cells to make messenger RNAs (mRNAs), which our cells then translate into proteins. Proteins, in turn, determine many of our features. This is true for all living organisms. Any changes ­ or mutations ­ in an organism's genes can lead to variations in its proteins, which can alter the organism's traits. This is the basis for evolution: mutations can lead to changes that allow an organism to better adapt to a new environment. This increases the organism's chances of survival and reproduction ­ its evolutionary 'fitness' ­ and makes it more likely that the mutation that generated the new trait in the first place will be passed on to the organism's descendants. However, just because two organisms have evolved similar traits to adapt to similar environments, it does not mean that the genetic basis for the adaptation is the same. For example, many animals share similar coloring to warn off predators, but the way that coloring is coded genetically is completely different. In species that are related (which share many of the same genes), this type of evolution is called 'parallel evolution', and it can make it difficult for scientists to understand how an organism evolved and pinpoint exactly what mutations are linked to which features. In 1988, scientists established the 'long-term evolution experiment' to tackle questions about how evolution works. The experiment, which has been running for over 30 years, consisted on tracking the evolution of 12 populations of Escherichia coli bacteria grown in separate flasks containing the same low-nutrient medium. The initial 12 populations were genetically identical, making this an ideal system to study parallel evolution, since all the populations had to evolve to adapt to the same environment, whilst isolated from each other. In previous experiments, scientists had already noted that while the different bacterial populations grew in similar ways, they had mostly different mutations. To better understand parallel evolution, Favate et al. analyzed the synthesis rates of RNA and proteins in the E. coli populations used in the long-term evolution experiment. They found that 22 years after the start of the experiment, all 12 populations produced more RNA, grew faster and were bigger. Additionally, while the different populations had accumulated few shared mutations after 22 years, they all shared similar patterns of RNA levels and protein synthesis rates. Further probing revealed that parallel evolution may be linked to how genes are regulated: mutations in regulators of related groups of genes involved in the same processes inside the cell can amplify the degree of parallel changes in organisms. This means that mutations in these genes may lead to similar traits. These findings provide insight into how parallel evolution arises in the long-term evolution experiment, and provides clues as to how the same traits can evolve several times.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Adaptação Fisiológica/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Bactérias/genética , Mutação , RNA Mensageiro/metabolismo
9.
Bioinformatics ; 38(8): 2358-2360, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35157051

RESUMO

MOTIVATION: Ribosome profiling, or Ribo-seq, is the state-of-the-art method for quantifying protein synthesis in living cells. Computational analysis of Ribo-seq data remains challenging due to the complexity of the procedure, as well as variations introduced for specific organisms or specialized analyses. RESULTS: We present riboviz 2, an updated riboviz package, for the comprehensive transcript-centric analysis and visualization of Ribo-seq data. riboviz 2 includes an analysis workflow built on the Nextflow workflow management system for end-to-end processing of Ribo-seq data. riboviz 2 has been extensively tested on diverse species and library preparation strategies, including multiplexed samples. riboviz 2 is flexible and uses open, documented file formats, allowing users to integrate new analyses with the pipeline. AVAILABILITY AND IMPLEMENTATION: riboviz 2 is freely available at github.com/riboviz/riboviz.


Assuntos
Perfil de Ribossomos , Ribossomos , Ribossomos/genética , Ribossomos/metabolismo , Fluxo de Trabalho , RNA Mensageiro/metabolismo , Análise de Dados , Análise de Sequência de RNA/métodos
10.
Methods Mol Biol ; 2404: 83-110, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34694605

RESUMO

The emergence of ribosome profiling as a tool for measuring the translatome has provided researchers with valuable insights into the post-transcriptional regulation of gene expression. Despite the biological insights and technical improvements made since the technique was initially described by Ingolia et al. (Science 324(5924):218-223, 2009), ribosome profiling measurements and subsequent data analysis remain challenging. Here, we describe our lab's protocol for performing ribosome profiling in bacteria, yeast, and mammalian cells. This protocol has integrated elements from three published ribosome profiling methods. In addition, we describe a tool called RiboViz (Carja et al., BMC Bioinformatics 18:461, 2017) ( https://github.com/riboviz/riboviz ) for the analysis and visualization of ribosome profiling data. Given raw sequencing reads and transcriptome information (e.g., FASTA, GFF) for a species, RiboViz performs the necessary pre-processing and mapping of the raw sequencing reads. RiboViz also provides the user with various quality control visualizations.


Assuntos
Ribossomos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Biossíntese de Proteínas , Controle de Qualidade , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Análise de Sequência de RNA , Transcriptoma
11.
J Eukaryot Microbiol ; 68(2): e12837, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33274482

RESUMO

Malawimonadida is a deep-level (arguably "kingdom-scale") lineage of eukaryotes whose phylogenetic affinities are uncertain but of great evolutionary interest, as the group is suspected to branch close to the root of the tree of eukaryotes. Part of the difficulty in placing Malawimonadida phylogenetically is its tiny circumscription: at present, it comprises only two described and one cultured but undescribed species, all of them are freshwater suspension-feeding nanoflagellates. In this study, we cultivated and characterised Imasa heleensis gen. nov., sp. nov. (Imasidae fam. nov.), the first marine malawimonad to be described. Light and electron microscopy observations show that Imasa is largely similar to other malawimonads, but more frequently adheres to the substrate, often by means of a pliable posterior extension. Phylogenetic analyses based on two ribosomal RNA genes and four translated protein-coding genes using three different taxon sets place Imasa as sister to the three freshwater malawimonad strains with strong support. Imasa's mitochondrial genome is circular-mapping and shows a similar gene complement to other known malawimonads. We conclude that Imasa represents an important expansion of the range of taxa available for future evolutionary study.


Assuntos
Eucariotos , Eucariotos/genética , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA
12.
J Biol Chem ; 294(14): 5508-5520, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30733333

RESUMO

Diabetes promotes the posttranslational modification of proteins by O-linked addition of GlcNAc (O-GlcNAcylation) to Ser/Thr residues of proteins and thereby contributes to diabetic complications. In the retina of diabetic mice, the repressor of mRNA translation, eIF4E-binding protein 1 (4E-BP1), is O-GlcNAcylated, and sequestration of the cap-binding protein eukaryotic translation initiation factor (eIF4E) is enhanced. O-GlcNAcylation has also been detected on several eukaryotic translation initiation factors and ribosomal proteins. However, the functional consequence of this modification is unknown. Here, using ribosome profiling, we evaluated the effect of enhanced O-GlcNAcylation on retinal gene expression. Mice receiving thiamet G (TMG), an inhibitor of the O-GlcNAc hydrolase O-GlcNAcase, exhibited enhanced retinal protein O-GlcNAcylation. The principal effect of TMG on retinal gene expression was observed in ribosome-associated mRNAs (i.e. mRNAs undergoing translation), as less than 1% of mRNAs exhibited changes in abundance. Remarkably, ∼19% of the transcriptome exhibited TMG-induced changes in ribosome occupancy, with 1912 mRNAs having reduced and 1683 mRNAs having increased translational rates. In the retina, the effect of O-GlcNAcase inhibition on translation of specific mitochondrial proteins, including superoxide dismutase 2 (SOD2), depended on 4E-BP1/2. O-GlcNAcylation enhanced cellular respiration and promoted mitochondrial superoxide levels in WT cells, and 4E-BP1/2 deletion prevented O-GlcNAcylation-induced mitochondrial superoxide in cells in culture and in the retina. The retina of diabetic WT mice exhibited increased reactive oxygen species levels, an effect not observed in diabetic 4E-BP1/2-deficient mice. These findings provide evidence for a mechanism whereby diabetes-induced O-GlcNAcylation promotes oxidative stress in the retina by altering the selection of mRNAs for translation.


Assuntos
Proteínas de Transporte/metabolismo , Retinopatia Diabética/metabolismo , Proteínas do Olho/metabolismo , Mitocôndrias/metabolismo , Fosfoproteínas/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Retina/metabolismo , Acilação , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Fatores de Iniciação em Eucariotos , Proteínas do Olho/genética , Feminino , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/patologia , Consumo de Oxigênio/efeitos dos fármacos , Fosfoproteínas/genética , Piranos/farmacologia , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Retina/patologia , Tiazóis/farmacologia
13.
Prostate ; 75(15): 1802-13, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26392321

RESUMO

INTRODUCTION: Prostate cancer that has metastasized to bone undergoes critical interactions with bone marrow stromal cells (BMSCs), ultimately promoting tumor survival. Previous studies have shown that BMSCs secrete factors that promote prostate cancer apoptosis or neuroendocrine differentiation. Because of the significance of transforming growth factor-ß (TGF-ß) family cytokines in cytostasis and bone metastasis, the role of TGF-ß signaling in the context of prostate cancer-BMSC interactions was investigated. METHODS: The role of TGF-ß family signaling in BMSC-induced apoptosis of lineage-related prostate cancer cells was investigated in live/dead assays. SMAD phosphorylation or activity during apoptosis and neuroendocrine differentiation was investigated using immunofluorescence, Western blotting, and luciferase reporter assays, along with the ALK-4, -5, -7 kinase inhibitor, SB-431542. RESULTS: Treatment of castration-resistant prostate cancer cells with SB-431542 resulted in significant reduction of apoptosis mediated by HS-5 BMSCs, supporting the involvement of TGF-ß/SMAD signaling during this event. Interestingly, however, pre-treatment of BMSCs with TGF-ß1 (5 ng/mL) yielded a conditioned medium that elicited a marked reduction in prostate cancer death. Phosphorylated-SMAD2 (P-SMAD2) was activated in BMSC-triggered transdifferentiated prostate cancer cells, as demonstrated through immunoblotting and luciferase reporter assays. However, SB-431542 did not restore androgen receptor and prostate specific antigen levels down-regulated by BMSC-secreted factors. Prostate cancer cells induced to undergo neuroendocrine differentiation in a BMSC-independent mechanism also showed elevated levels of P-SMAD2. DISCUSSION: Collectively, our findings indicate that: (1) TGF-ß family cytokines or regulated factors secreted from BMSCs are involved in prostate cancer apoptosis; (2) TGF-ß signaling in prostate cancer cells is induced during neuroendocrine differentiation; and (3) TGF-ß1 stimulation of BMSCs alters paracrine signaling to create a permissive environment for prostate cancer survival, suggesting a mechanism for prostate cancer-mediated colonization of bone. CONCLUSIONS: TGF-ß signaling resulting in activation of SMAD2 in prostate cancer may be an indicator of cellular stress in the presence of toxic paracrine factors released from the bone marrow stroma, ultimately fostering prostate cancer colonization of bone.


Assuntos
Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Benzamidas/farmacologia , Linhagem Celular Tumoral , Dioxóis/farmacologia , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/patologia , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Fator de Crescimento Transformador beta1/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA