Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Food Chem ; 460(Pt 1): 140395, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39047486

RESUMO

Precise monitoring of nitrite from real samples has gained significant attention due to its detrimental impact on human health. Herein, we have fabricated poly(3,4-ethylenedioxythiophene) functionalized carbon matrix suspended Cu nanoparticles (PEDOT-C@Cu-NPs) through a facile green synthesis approach. Additionally, we have used machine learning (ML) to optimize experimental parameters such as pH, drying time, and concentrations to predict current of the designed electrochemical sensor. The ML optimized concentration of fabricated C@Cu-NPs was further functionalized by PEDOT (π-electron mediator). The designed PEDOT functionalized C@Cu-NPs (PEDOT-C@Cu-NPs) electrode has shown excellent electro-oxidation capability towards NO2- ions due to highly exposed Cu facets, defects rich graphitic C and high π-electron density. Additionally, the designed material has shown low detection limit (3.91 µM), high sensitivity (0.6372 µA/µM/cm2), and wide linear range (5-580 µM). Additionally, the designed electrode has shown higher electrochemical sensing efficacy against real time monitoring from pickled vegetables extract.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Cobre , Aprendizado de Máquina , Nanopartículas Metálicas , Nitritos , Polímeros , Verduras , Polímeros/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Verduras/química , Nitritos/análise , Nitritos/química , Cobre/química , Nanopartículas Metálicas/química , Técnicas Eletroquímicas , Carbono/química , Contaminação de Alimentos/análise , Limite de Detecção
2.
RSC Adv ; 12(40): 26390-26399, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36275100

RESUMO

Several neurological disorders, including Parkinson's disease, schizophrenia, human immunodeficiency virus infection, and restless leg syndrome, majorly result from disruption in the dopamine (DA) level. Thus, useful information about the treatment and prevention of various genetic majorly mental health problems can be obtained through precise and real-time monitoring of DA. Herein, we report the fabrication of novel N-rich carbon-coated Au nanoparticles (NC@Au-NPs) by deriving from melamine-crosslinked citrate-stabilized Au NPs. NC@Au-NPs offer fast electro-oxidation efficacy towards DA, because of strong electrostatic attraction between negatively charged NC@Au-NPs and positively charged DA. The catalytic efficacy and shelf life of the designed system were further boosted by applying a mixture of polydopamine (PDA) and benzimidazolium-1-acetate ionic liquid (IL) as a sandwich between the working electrode surface (graphitic pencil electrode: GPE) and the designed nanohybrid NC@Au-NPs as a redox mediator. The results indicate that the designed novel NC@Au/PDA-IL/GPE exhibits excellent sensitivity, selectivity, and reproducibility over a wide linear range (50-1000 nm) and a low detection limit of 0.002 µM ± 0.001 as well. The developed sensor was successfully applied to monitor DA in the blood of COVID-19 quarantined patients and pharmaceutical samples with high accuracy, thus suggesting a powerful tool for the diagnosis of mental problems.

3.
Biosensors (Basel) ; 12(10)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36290981

RESUMO

Herein, we present a comprehensive investigation of rationally designed zinc selenide (ZnSe) nanostructures to achieve highly negatively charged ZnSe nanostructures. A Microwave-assisted hydrothermal synthesis method was used to synthesize three types of ZnSe nanostructures, i.e., nanorods, µ-spheres and nanoclusters, as characterized by a zeta potential analyzer, X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy and BET, which were labeled as type A, B and C. Three different solvents were used for the synthesis of type A, B and C ZnSe nanostructures, keeping other synthesis conditions such as temperature, pressure and precursors ratio constant. Based on two heating time intervals, 6 and 9 h, types A, B and C were further divided into types A6, A9, B6, B9, C6 and C9. ZnSe nanostructures were further evaluated based on their fluorescent quenching efficiency. The maximum fluorescence quenching effect was exhibited by the ZnSe-B6 type, which can be attributed to its highly negative surface charge that favored its strong interaction with cationic dye Rhodamine B (Rh-B). Further, the optimized ZnSe-B6 was used to fabricate an aptasensor for the detection of a food-based toxin, ochratoxin-A (OTA). The developed aptasensor exhibited a limit of detection of 0.07 ng/L with a wide linear range of 0.1 to 200 ng/L.


Assuntos
Aptâmeros de Nucleotídeos , Nanoestruturas , Ocratoxinas , Ocratoxinas/análise , Aptâmeros de Nucleotídeos/química , Nanoestruturas/química , Solventes , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA