Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39002850

RESUMO

PURPOSE: Minibeam radiation therapy (MBRT) is characterized by the delivery of submillimeter-wide regions of high "peak" and low "valley" doses throughout a tumor. Preclinical studies have long shown the promise of this technique, and we report here the first clinical implementation of MBRT. METHODS AND MATERIALS: A clinical orthovoltage unit was commissioned for MBRT patient treatments using 3-, 4-, 5-, 8-, and 10-cm diameter cones. The 180 kVp output was spatially separated into minibeams using a tungsten collimator with 0.5 mm wide slits spaced 1.1 mm on center. Percentage depth dose (PDD) measurements were obtained using film dosimetry and plastic water for both peak and valley doses. PDDs were measured on the central axis for offsets of 0, 0.5, and 1 cm. The peak-to-valley ratio was calculated at each depth for all cones and offsets. To mitigate the effects of patient motion on delivered dose, patient-specific 3-dimensional-printed collimator holders were created. These conformed to the unique anatomy of each patient and affixed the tungsten collimator directly to the body. Two patients were treated with MBRT; both received 2 fractions. RESULTS: Peak PDDs decreased gradually with depth. Valley PDDs initially increased slightly with depth, then decreased gradually beyond 2 cm. The peak-to-valley ratios were highest at the surface for smaller cone sizes and offsets. In vivo film dosimetry confirmed a distinct delineation of peak and valley doses in both patients treated with MBRT with no dose blurring. Both patients experienced prompt improvement in symptoms and tumor response. CONCLUSIONS: We report commissioning results, treatment processes, and the first 2 patients treated with MBRT using a clinical orthovoltage unit. While demonstrating the feasibility of this approach is a crucial first step toward wider translation, clinical trials are needed to further establish safety and efficacy.

2.
Int J Radiat Oncol Biol Phys ; 114(3): 478-493, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35934161

RESUMO

PURPOSE: Synchrotron-generated microbeam radiation therapy (MRT) represents an innovative preclinical type of cancer radiation therapy with an excellent therapeutic ratio. Beyond local control, metastatic spread is another important endpoint to assess the effectiveness of radiation therapy treatment. Currently, no data exist on an association between MRT and metastasis. Here, we evaluated the ability of MRT to delay B16F10 murine melanoma progression and locoregional metastatic spread. METHODS AND MATERIALS: We assessed the primary tumor response and the extent of metastasis in sentinel lymph nodes in 2 cohorts of C57BL/6J mice, one receiving a single MRT and another receiving 2 MRT treatments delivered with a 10-day interval. We compared these 2 cohorts with synchrotron broad beam-irradiated and nonirradiated mice. In addition, using multiplex quantitative platforms, we measured plasma concentrations of 34 pro- and anti-inflammatory cytokines and frequencies of immune cell subsets infiltrating primary tumors that received either 1 or 2 MRT treatments. RESULTS: Two MRT treatments were significantly more effective for local control than a single MRT. Remarkably, the second MRT also triggered a pronounced regression of out-of-radiation field locoregional metastasis. Augmentation of CXCL5, CXCL12, and CCL22 levels after the second MRT indicated that inhibition of melanoma progression could be associated with increased activity of antitumor neutrophils and T-cells. Indeed, we demonstrated elevated infiltration of neutrophils and activated T-cells in the tumors after the second MRT. CONCLUSIONS: Our study highlights the importance of monitoring metastasis after MRT and provides the first MRT fractionation schedule that promotes local and locoregional control with the potential to manage distant metastasis.


Assuntos
Melanoma , Síncrotrons , Animais , Citocinas , Melanoma/radioterapia , Camundongos , Camundongos Endogâmicos C57BL , Síndrome , Linfócitos T
3.
Int J Mol Sci ; 22(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299373

RESUMO

Melanoma is the deadliest type of skin cancer, due to its invasiveness and limited treatment efficacy. The main therapy for primary melanoma and solitary organ metastases is wide excision. Adjuvant therapy, such as chemotherapy and targeted therapies are mainly used for disseminated disease. Radiotherapy (RT) is a powerful treatment option used in more than 50% of cancer patients, however, conventional RT alone is unable to eradicate melanoma. Its general radioresistance is attributed to overexpression of repair genes in combination with cascades of biochemical repair mechanisms. A novel sophisticated technique based on synchrotron-generated, spatially fractionated RT, called Microbeam Radiation Therapy (MRT), has been shown to overcome these treatment limitations by allowing increased dose delivery. With MRT, a collimator subdivides the homogeneous radiation field into an array of co-planar, high-dose microbeams that are tens of micrometres wide and spaced a few hundred micrometres apart. Different preclinical models demonstrated that MRT has the potential to completely ablate tumours, or significantly improve tumour control while dramatically reducing normal tissue toxicity. Here, we discuss the role of conventional RT-induced immunity and the potential for MRT to enhance local and systemic anti-tumour immune responses. Comparative gene expression analysis from preclinical tumour models indicated a specific gene signature for an 'MRT-induced immune effect'. This focused review highlights the potential of MRT to overcome the inherent radioresistance of melanoma which could be further enhanced for future clinical use with combined treatment strategies, in particular, immunotherapy.


Assuntos
Melanoma/radioterapia , Animais , Terapia Combinada/métodos , Humanos , Imunidade/imunologia , Imunoterapia/métodos , Melanoma/imunologia , Melanoma/terapia , Radioterapia/métodos , Síncrotrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA