Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 8(8): 1690-702, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27454226

RESUMO

Muscle wasting in old age or cancer may result from failed myofiber regeneration and/or accelerated atrophy. This study aimed to determine from transcriptomic analysis of human muscle the integrity of the cellular stress response system in relation to satellite cell differentiation or apoptosis in patients with cancer (weight-stable (CWS) or weight-losing (CWL)) or healthy elderly (HE) when compared with healthy middle-aged controls (HMA). 28 patients with cancer (CWS: 18 and CWL: 10), HE: 21 and HMA: 20 underwent biopsy of quadriceps muscle. The expression of transcription factors for muscle regeneration (Pax3, Pax7 and MyoD) was increased in CWS and HE compared with HMA (p≤0.001). In contrast, the expression of the late myogenic differentiation marker MyoG was reduced in CWS and CWL but increased in HE (p≤0.0001). Bax was significantly increased in CWS, CWL and HE (p≤0.0001). Expression of the oxidative defense genes SOD2, GCLM, and Nrf2 was decreased in CWS and CWL but increased in HE (p≤0.0001). There is evidence for blockade of satellite cell maturation, upregulation of apoptosis and reduced oxidative defense in the muscle of cancer patients. In the healthy elderly the potential for differentiation and oxidative defense is maintained.


Assuntos
Caquexia/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Neoplasias/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Idoso , Idoso de 80 Anos ou mais , Caquexia/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Neoplasias/patologia , Células Satélites de Músculo Esquelético/patologia
2.
J Cachexia Sarcopenia Muscle ; 6(3): 212-21, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26401467

RESUMO

BACKGROUND: Pancreatic cancer is often accompanied by cachexia, a syndrome of severe weight loss and muscle wasting. A suboptimal response to nutritional support may further aggravate cachexia, yet the influence of nutrition on protein kinetics in cachectic patients is poorly understood. METHODS: Eight cachectic pancreatic cancer patients and seven control patients received a primed continuous intravenous infusion of l-[ring-(2)H5]phenylalanine and l-[3,3-(2)H2]tyrosine for 8 h and ingested sips of water with l-[1-(13)C]phenylalanine every 30 min. After 4 h, oral feeding was started. Whole body protein breakdown, protein synthesis, and net protein balance were calculated. Results are given as median with interquartile range. RESULTS: Baseline protein breakdown and protein synthesis were higher in cachectic patients compared with the controls (breakdown: 67.1 (48.1-79.6) vs. 45.8 (42.6-46.3) µmol/kg lean body mass/h, P = 0.049; and synthesis: 63.0 (44.3-75.6) vs. 41.8 (37.6-42.5) µmol/kg lean body mass/h, P = 0.021). During feeding, protein breakdown decreased significantly to 45.5 (26.9-51.1) µmol/kg lean body mass/h (P = 0.012) in the cachexia group and to 33.7 (17.4-37.1) µmol/kg lean body mass/h (P = 0.018) in the control group. Protein synthesis was not affected by feeding in cachectic patients: 58.4 (46.5-76.1) µmol/kg lean body mass/h, but was stimulated in controls: 47.9 (41.8-56.7) µmol/kg lean body mass/h (P = 0.018). Both groups showed a comparable positive net protein balance during feeding: cachexia: 19.7 (13.1-23.7) and control: 16.3 (13.6-25.4) µmol/kg lean body mass/h (P = 0.908). CONCLUSION: Cachectic pancreatic cancer patients have a higher basal protein turnover. Both cachectic patients and controls show a comparable protein anabolism during feeding, albeit through a different pattern of protein kinetics. In cachectic patients, this is primarily related to reduced protein breakdown, whereas in controls, both protein breakdown and protein synthesis alterations are involved.

3.
Curr Opin Clin Nutr Metab Care ; 11(3): 208-13, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18403914

RESUMO

PURPOSE OF REVIEW: The diverse protein products of the dermcidin gene are relevant to immunity, cancer cell progression and cancer cachexia. This article evaluates recent developments/controversies around dermcidin. RECENT FINDINGS: Dermcidin has recently been shown to act as a survival/proliferation factor in hepatoma and prostate cancer cell lines. Recent studies suggest that the Y-P30 subunit of the dermcidin polypeptide offers a survival advantage in such cancer cells. Nevertheless, the relevance of Y-P30 to cancer growth in vivo, and mechanisms of action remain unknown. In mice, tumour cells appear to glycosylate the Y-P30 subunit, transforming it into a potent skeletal muscle proteolysis-inducing factor. Recent work has described a receptor and signal transduction pathways for murine glycosylated proteolysis-inducing factor. The absence of classical N-glycosylation sites in the human proteolysis-inducing factor peptide and the lack of specific tools for the detection of the key carbohydrate moieties conferring the proteolysis-inducing activity, however, remain barriers to confirming glycosylated proteolysis-inducing factor as a pro-cachectic factor in humans. SUMMARY: There is a growing body of evidence illustrating dermcidin as an oncogene and Y-P30 as a survival factor. The biology of murine proteolysis-inducing factor as a pro-cachectic factor continues to evolve; however, its role in human biology remains speculative.


Assuntos
Caquexia/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Peptídeos/genética , Proteoglicanas/genética , Animais , Caquexia/metabolismo , Sobrevivência Celular , Glicosilação , Humanos , Peptídeos/metabolismo , Peptídeos/fisiologia , Proteoglicanas/metabolismo , Proteoglicanas/fisiologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA