RESUMO
BACKGROUND: Pediatric brain tumor survivors (PBTS) experience neurocognitive late effects, including problems with working memory, processing speed, and other higher order skills. These skill domains are subserved by various white matter (WM) pathways, but not much is known about these brain-behavior links in PBTS. This study examined the anterior corona radiata (ACR), inferior fronto-occipital fasciculi (IFOF), and superior longitudinal fasciculi (SLF) by analyzing associations among diffusion metrics and neurocognition. PROCEDURE: Thirteen PBTS and 10 healthy controls (HC), aged 9-14 years, completed performance-based measures of processing speed and executive function, and parents rated their child's day-to-day executive skills. Children underwent magnetic resonance imaging (MRI) with diffusion weighted imaging that yielded fractional anisotropy (FA) and mean diffusivity (MD) values. Independent samples t-tests assessed group differences on neurocognitive and imaging measures, and pooled within-group correlations examined relationships among measures across groups. RESULTS: PBTS performed more poorly than HC on measures of processing speed, divided attention, and shifting (d = -1.08 to -1.44). WM microstructure differences were significant in MD values for the bilateral SLF and ACR, with PBTS showing higher diffusivity (d = 0.75 to 1.21). Better processing speed, divided attention, and shifting were associated with lower diffusivity in the IFOF, SLF, and ACR, but were not strongly correlated with FA. CONCLUSIONS: PBTS demonstrate poorer neurocognitive functioning that is linked to differences in WM microstructure, as evidenced by higher diffusivity in the ACR, SLF, and IFOF. These findings support the use of MD in understanding alterations in WM microstructure in PTBS and shed light on potential functions of these pathways.
Assuntos
Neoplasias Encefálicas , Substância Branca , Criança , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Imagem de Tensor de Difusão/métodos , Encéfalo/patologia , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Sobreviventes , AnisotropiaRESUMO
To examine delay from developmental screening to autism diagnosis, we used real-world health care data from a national research network to estimate the time between these events. We found an average delay of longer than 2 years from first screening to diagnosis, with no significant differences observed by sex, race, or ethnicity.