Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell Host Microbe ; 30(9): 1219-1230.e7, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35985336

RESUMO

Rabies virus (RABV) causes lethal encephalitis and is responsible for approximately 60,000 deaths per year. As the sole virion-surface protein, the rabies virus glycoprotein (RABV-G) mediates host-cell entry. RABV-G's pre-fusion trimeric conformation displays epitopes bound by protective neutralizing antibodies that can be induced by vaccination or passively administered for post-exposure prophylaxis. We report a 2.8-Å structure of a RABV-G trimer in the pre-fusion conformation, in complex with two neutralizing and protective monoclonal antibodies, 17C7 and 1112-1, that recognize distinct epitopes. One of these antibodies is a licensed prophylactic (17C7, Rabishield), which we show locks the protein in pre-fusion conformation. Targeted mutations can similarly stabilize RABV-G in the pre-fusion conformation, a key step toward structure-guided vaccine design. These data reveal the higher-order architecture of a key therapeutic target and the structural basis of neutralization by antibodies binding two key antigenic sites, and this will facilitate the development of improved vaccines and prophylactic antibodies.


Assuntos
Vacina Antirrábica , Vírus da Raiva , Raiva , Anticorpos Monoclonais , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais , Epitopos , Glicoproteínas/genética , Humanos , Proteínas de Membrana , Raiva/tratamento farmacológico , Raiva/prevenção & controle , Vacina Antirrábica/genética
2.
Lancet Microbe ; 3(9): e663-e671, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35907430

RESUMO

BACKGROUND: Rabies kills around 60 000 people each year. ChAdOx2 RabG, a simian adenovirus-vectored rabies vaccine candidate, might have potential to provide low-cost single-dose pre-exposure rabies prophylaxis. This first-in-human study aimed to evaluate its safety and immunogenicity in healthy adults. METHODS: We did a single-centre phase 1 study of ChAdOx2 RabG, administered as a single intramuscular dose, with non-randomised open-label dose escalation at the Centre for Clinical Vaccinology and Tropical Medicine, Oxford, UK. Healthy adults were sequentially allocated to groups receiving low (5 × 109 viral particles), middle (2·5 × 1010 viral particles), and high doses (5 x 1010 viral particles) of ChAdOx2 RabG and were followed up to day 56 after vaccination. The primary objective was to assess safety. The secondary objective was to assess immunogenicity with the internationally standardised rabies virus neutralising antibody assay. In an optional follow-up phase 1 year after enrolment, we measured antibody maintenance then administered a licensed rabies vaccine (to simulate post-exposure prophylaxis) and measured recall responses. The trial is registered with ClinicalTrials.gov, NCT04162600, and is now closed to new participants. FINDINGS: Between Jan 2 and Oct 28, 2020, 12 adults received low (n=3), middle (n=3), and high doses (n=6) of ChAdOx2 RabG. Participants reported predominantly mild-to-moderate reactogenicity. There were no serious adverse events. Virus neutralising antibody concentrations exceeded the recognised correlate of protection (0·5 IU/mL) in three middle-dose recipients and six high-dose recipients within 56 days of vaccination (median 18·0 IU/mL). The median peak virus neutralising antibody concentrations within 56 days were 0·7 IU/mL (range 0·0-54·0 IU/mL) for the low-dose group, 18·0 IU/mL (0·7-18·0 IU/mL) for the middle-dose group, and 18·0 IU/mL (6·0-486·0 IU/mL) for the high-dose group. Nine participants returned for the additional follow-up after 1 year. Of these nine participants, virus neutralising antibody titres of more than 0·5 IU/mL were maintained in six of seven who had received middle-dose or high-dose ChAdOx2 RabG. Within 7 days of administration of the first dose of a licensed rabies vaccine, nine participants had virus neutralising antibody titres of more than 0·5 IU/mL. INTERPRETATION: In this study, ChAdOx2 RabG showed an acceptable safety and tolerability profile and encouraging immunogenicity, supporting further clinical evaluation. FUNDING: UK Medical Research Council and Engineering and Physical Sciences Research Council.


Assuntos
Adenovirus dos Símios , Vacina Antirrábica , Raiva , Adenovirus dos Símios/genética , Adulto , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Raiva/prevenção & controle , Vacina Antirrábica/efeitos adversos
3.
Biotechnol Bioeng ; 119(1): 48-58, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34585736

RESUMO

Manufacturing has been the key factor limiting rollout of vaccination during the COVID-19 pandemic, requiring rapid development and large-scale implementation of novel manufacturing technologies. ChAdOx1 nCoV-19 (AZD1222, Vaxzevria) is an efficacious vaccine against SARS-CoV-2, based upon an adenovirus vector. We describe the development of a process for the production of this vaccine and others based upon the same platform, including novel features to facilitate very large-scale production. We discuss the process economics and the "distributed manufacturing" approach we have taken to provide the vaccine at globally-relevant scale and with international security of supply. Together, these approaches have enabled the largest viral vector manufacturing campaign to date, providing a substantial proportion of global COVID-19 vaccine supply at low cost.


Assuntos
Vacinas contra COVID-19 , COVID-19/prevenção & controle , ChAdOx1 nCoV-19 , Indústria Farmacêutica/métodos , Desenvolvimento de Vacinas , Animais , Escherichia coli , Geografia , Células HEK293 , Humanos , Pan troglodytes , SARS-CoV-2 , Tecnologia Farmacêutica , Vacinação/instrumentação
4.
Vaccines (Basel) ; 9(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34835180

RESUMO

Adenovirus vectored vaccines have entered global use during the COVID-19 pandemic, and are in development for multiple other human and veterinary applications. An attraction of the technology is the suitability of the vaccines for storage at 2-8 °C for months. Widely used COVID-19 vaccine ChAdOx1 nCoV-19 (University of Oxford/AstraZeneca) is based on a species E simian adenovirus. Species E simian serotypes have been used in a wide range of other development programs, but the stability of such vectors has not been extensively described in the peer-reviewed literature. Here, we explore the stability of two candidate vaccines based on two species E serotypes: a Rift Valley fever vaccine based upon the ChAdOx1 vector (Y25 serotype) used in ChAdOx1 nCoV-19, and a rabies vaccine based upon a ChAdOx2 vector (AdC68 serotype). We describe each vector's stability in liquid and lyophilised formulations using in vitro and in vivo potency measurements. Our data support the suitability of liquid formulations of these vectors for storage at 2-8 °C for up to 1 year, and potentially for nonrefrigerated storage for a brief period during last-leg distribution (perhaps 1-3 days at 20 °C-the precise definition of acceptable last-leg storage conditions would require further product-specific data). Depending upon the level of inprocess potency loss that is economically acceptable, and the level of instorage loss that is compatible with maintenance of acceptable end-of-storage potency, a previously reported lyophilised formulation may enable longer term storage at 20 °C or storage for a number of days at 30 °C.

5.
Lancet ; 396(10267): 1979-1993, 2021 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-33220855

RESUMO

BACKGROUND: Older adults (aged ≥70 years) are at increased risk of severe disease and death if they develop COVID-19 and are therefore a priority for immunisation should an efficacious vaccine be developed. Immunogenicity of vaccines is often worse in older adults as a result of immunosenescence. We have reported the immunogenicity of a novel chimpanzee adenovirus-vectored vaccine, ChAdOx1 nCoV-19 (AZD1222), in young adults, and now describe the safety and immunogenicity of this vaccine in a wider range of participants, including adults aged 70 years and older. METHODS: In this report of the phase 2 component of a single-blind, randomised, controlled, phase 2/3 trial (COV002), healthy adults aged 18 years and older were enrolled at two UK clinical research facilities, in an age-escalation manner, into 18-55 years, 56-69 years, and 70 years and older immunogenicity subgroups. Participants were eligible if they did not have severe or uncontrolled medical comorbidities or a high frailty score (if aged ≥65 years). First, participants were recruited to a low-dose cohort, and within each age group, participants were randomly assigned to receive either intramuscular ChAdOx1 nCoV-19 (2·2 × 1010 virus particles) or a control vaccine, MenACWY, using block randomisation and stratified by age and dose group and study site, using the following ratios: in the 18-55 years group, 1:1 to either two doses of ChAdOx1 nCoV-19 or two doses of MenACWY; in the 56-69 years group, 3:1:3:1 to one dose of ChAdOx1 nCoV-19, one dose of MenACWY, two doses of ChAdOx1 nCoV-19, or two doses of MenACWY; and in the 70 years and older, 5:1:5:1 to one dose of ChAdOx1 nCoV-19, one dose of MenACWY, two doses of ChAdOx1 nCoV-19, or two doses of MenACWY. Prime-booster regimens were given 28 days apart. Participants were then recruited to the standard-dose cohort (3·5-6·5 × 1010 virus particles of ChAdOx1 nCoV-19) and the same randomisation procedures were followed, except the 18-55 years group was assigned in a 5:1 ratio to two doses of ChAdOx1 nCoV-19 or two doses of MenACWY. Participants and investigators, but not staff administering the vaccine, were masked to vaccine allocation. The specific objectives of this report were to assess the safety and humoral and cellular immunogenicity of a single-dose and two-dose schedule in adults older than 55 years. Humoral responses at baseline and after each vaccination until 1 year after the booster were assessed using an in-house standardised ELISA, a multiplex immunoassay, and a live severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) microneutralisation assay (MNA80). Cellular responses were assessed using an ex-vivo IFN-γ enzyme-linked immunospot assay. The coprimary outcomes of the trial were efficacy, as measured by the number of cases of symptomatic, virologically confirmed COVID-19, and safety, as measured by the occurrence of serious adverse events. Analyses were by group allocation in participants who received the vaccine. Here, we report the preliminary findings on safety, reactogenicity, and cellular and humoral immune responses. This study is ongoing and is registered with ClinicalTrials.gov, NCT04400838, and ISRCTN, 15281137. FINDINGS: Between May 30 and Aug 8, 2020, 560 participants were enrolled: 160 aged 18-55 years (100 assigned to ChAdOx1 nCoV-19, 60 assigned to MenACWY), 160 aged 56-69 years (120 assigned to ChAdOx1 nCoV-19: 40 assigned to MenACWY), and 240 aged 70 years and older (200 assigned to ChAdOx1 nCoV-19: 40 assigned to MenACWY). Seven participants did not receive the boost dose of their assigned two-dose regimen, one participant received the incorrect vaccine, and three were excluded from immunogenicity analyses due to incorrectly labelled samples. 280 (50%) of 552 analysable participants were female. Local and systemic reactions were more common in participants given ChAdOx1 nCoV-19 than in those given the control vaccine, and similar in nature to those previously reported (injection-site pain, feeling feverish, muscle ache, headache), but were less common in older adults (aged ≥56 years) than younger adults. In those receiving two standard doses of ChAdOx1 nCoV-19, after the prime vaccination local reactions were reported in 43 (88%) of 49 participants in the 18-55 years group, 22 (73%) of 30 in the 56-69 years group, and 30 (61%) of 49 in the 70 years and older group, and systemic reactions in 42 (86%) participants in the 18-55 years group, 23 (77%) in the 56-69 years group, and 32 (65%) in the 70 years and older group. As of Oct 26, 2020, 13 serious adverse events occurred during the study period, none of which were considered to be related to either study vaccine. In participants who received two doses of vaccine, median anti-spike SARS-CoV-2 IgG responses 28 days after the boost dose were similar across the three age cohorts (standard-dose groups: 18-55 years, 20 713 arbitrary units [AU]/mL [IQR 13 898-33 550], n=39; 56-69 years, 16 170 AU/mL [10 233-40 353], n=26; and ≥70 years 17 561 AU/mL [9705-37 796], n=47; p=0·68). Neutralising antibody titres after a boost dose were similar across all age groups (median MNA80 at day 42 in the standard-dose groups: 18-55 years, 193 [IQR 113-238], n=39; 56-69 years, 144 [119-347], n=20; and ≥70 years, 161 [73-323], n=47; p=0·40). By 14 days after the boost dose, 208 (>99%) of 209 boosted participants had neutralising antibody responses. T-cell responses peaked at day 14 after a single standard dose of ChAdOx1 nCoV-19 (18-55 years: median 1187 spot-forming cells [SFCs] per million peripheral blood mononuclear cells [IQR 841-2428], n=24; 56-69 years: 797 SFCs [383-1817], n=29; and ≥70 years: 977 SFCs [458-1914], n=48). INTERPRETATION: ChAdOx1 nCoV-19 appears to be better tolerated in older adults than in younger adults and has similar immunogenicity across all age groups after a boost dose. Further assessment of the efficacy of this vaccine is warranted in all age groups and individuals with comorbidities. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midlands NIHR Clinical Research Network, and AstraZeneca.


Assuntos
Vacinas contra COVID-19/administração & dosagem , Imunogenicidade da Vacina , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/farmacologia , ChAdOx1 nCoV-19 , Feminino , Humanos , Imunização Secundária/efeitos adversos , Imunoglobulina G/sangue , Imunoglobulina G/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/efeitos dos fármacos , Método Simples-Cego , Adulto Jovem
6.
Structure ; 28(12): 1271-1287.e5, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33035450

RESUMO

Vaccinia virus A46 is an anti-inflammatory and non-anti-apoptotic, two-domain member of the poxviral Bcl-2-like protein family that inhibits the cellular innate immune response at the level of the Toll/interleukin-1 receptor (TIR) domain-containing TLR adaptor proteins MAL, MyD88, TRAM, and TRIF. The mechanism of interaction of A46 with its targets has remained unclear. The TIR domains of MAL and MyD88 have been shown to signal by forming filamentous assemblies. We show a clear concentration-dependent destruction of both of these assemblies by A46 by means of negative-stain electron microscopy from molar ratios of 1:15 for MAL and 1:30 for MyD88. Using targeted mutagenesis and protein-protein crosslinking, we show that A46 interacts with MAL and MyD88 through several facets, including residues on helices α1 and α7 and the C-terminal flexible region. We propose a model in which A46 targets the MAL and MyD88 signalosome intra-strand interfaces and gradually destroys their assemblies in a concentration-dependent manner.


Assuntos
Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/química , Fator 88 de Diferenciação Mieloide/química , Proteínas Virais/química , Sítios de Ligação , Humanos , Microscopia Eletrônica , Simulação de Acoplamento Molecular , Mutagênese , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Ligação Proteica , Proteínas Virais/genética , Proteínas Virais/metabolismo
7.
Vaccine ; 37(47): 6951-6961, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31047679

RESUMO

A variety of Good Manufacturing Practice (GMP) compliant processes have been reported for production of non-replicating adenovirus vectors, but important challenges remain. Most clinical development of adenovirus vectors now uses simian adenoviruses or rare human serotypes, whereas reported manufacturing processes mainly use serotypes such as AdHu5 which are of questionable relevance for clinical vaccine development. Many clinically relevant vaccine transgenes interfere with adenovirus replication, whereas most reported process development uses selected antigens or even model transgenes such as fluorescent proteins which cause little such interference. Processes are typically developed for a single adenovirus serotype - transgene combination, requiring extensive further optimization for each new vaccine. There is a need for rapid production platforms for small GMP batches of non-replicating adenovirus vectors for early-phase vaccine trials, particularly in preparation for response to emerging pathogen outbreaks. Such platforms must be robust to variation in the transgene, and ideally also capable of producing adenoviruses of more than one serotype. It is also highly desirable for such processes to be readily implemented in new facilities using commercially available single-use materials, avoiding the need for development of bespoke tools or cleaning validation, and for them to be readily scalable for later-stage studies. Here we report the development of such a process, using single-use stirred-tank bioreactors, a transgene-repressing HEK293 cell - promoter combination, and fully single-use filtration and ion exchange components. We demonstrate applicability of the process to candidate vaccines against rabies, malaria and Rift Valley fever, each based on a different adenovirus serotype. We compare performance of a range of commercially available ion exchange media, including what we believe to be the first published use of a novel media for adenovirus purification (NatriFlo® HD-Q, Merck). We demonstrate the need for minimal process individualization for each vaccine, and that the product fulfils regulatory quality expectations. Cell-specific yields are at the upper end of those previously reported in the literature, and volumetric yields are in the range 1 × 1013 - 5 × 1013 purified virus particles per litre of culture, such that a 2-4 L process is comfortably adequate to produce vaccine for early-phase trials. The process is readily transferable to any GMP facility with the capability for mammalian cell culture and aseptic filling of sterile products.


Assuntos
Adenovirus dos Símios/imunologia , Vetores Genéticos/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Células HEK293 , Humanos , Raiva/imunologia , Vacina Antirrábica/imunologia , Sorogrupo , Transgenes/imunologia , Replicação Viral/imunologia
8.
J Virol Methods ; 251: 15-21, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28966037

RESUMO

For vaccine development, 3D-structure determination, direct fluorescent labelling, and numerous other studies, homogeneous virus preparations of high purity are essential. Working with human rhinoviruses (RVs), members of the picornavirus family and the main cause of generally mild respiratory infections, we noticed that our routine preparations appeared highly pure on analysis by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), exclusively showing the four viral capsid proteins (VPs). However, the preparations turned out to contain substantial amounts of contaminating material when analyzed by orthogonal analytical methods including capillary zone electrophoresis, nano electrospray gas-phase electrophoretic mobility molecular analysis (nES GEMMA), and negative stain transmission electron microscopy (TEM). Because these latter analyses are not routine to many laboratories, the above contaminations might remain unnoticed and skew experimental results. By using human rhinovirus serotype A2 (RV-A2) as example we report monolithic anion-exchange chromatography (AEX) as a last polishing step in the purification and demonstrate that it yields infective, highly pure, virus (RV-A2 in the respective fractions was confirmed by peptide mass fingerprinting) devoid of foreign material as judged by the above criteria.


Assuntos
Cromatografia por Troca Iônica/métodos , Rhinovirus/isolamento & purificação , Virologia/métodos
9.
Sci Rep ; 7(1): 2848, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28588213

RESUMO

Porphyromonas gingivalis and Porphyromonas endodontalis are important bacteria related to periodontitis, the most common chronic inflammatory disease in humans worldwide. Its comorbidity with systemic diseases, such as type 2 diabetes, oral cancers and cardiovascular diseases, continues to generate considerable interest. Surprisingly, these two microorganisms do not ferment carbohydrates; rather they use proteinaceous substrates as carbon and energy sources. However, the underlying biochemical mechanisms of their energy metabolism remain unknown. Here, we show that dipeptidyl peptidase 11 (DPP11), a central metabolic enzyme in these bacteria, undergoes a conformational change upon peptide binding to distinguish substrates from end products. It binds substrates through an entropy-driven process and end products in an enthalpy-driven fashion. We show that increase in protein conformational entropy is the main-driving force for substrate binding via the unfolding of specific regions of the enzyme ("entropy reservoirs"). The relationship between our structural and thermodynamics data yields a distinct model for protein-protein interactions where protein conformational entropy modulates the binding free-energy. Further, our findings provide a framework for the structure-based design of specific DPP11 inhibitors.


Assuntos
Bactérias/enzimologia , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Termodinâmica , Calorimetria , Ativação Enzimática , Hidrólise , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
10.
PLoS Pathog ; 12(12): e1006079, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27973613

RESUMO

Vaccinia virus interferes with early events of the activation pathway of the transcriptional factor NF-kB by binding to numerous host TIR-domain containing adaptor proteins. We have previously determined the X-ray structure of the A46 C-terminal domain; however, the structure and function of the A46 N-terminal domain and its relationship to the C-terminal domain have remained unclear. Here, we biophysically characterize residues 1-83 of the N-terminal domain of A46 and present the X-ray structure at 1.55 Å. Crystallographic phases were obtained by a recently developed ab initio method entitled ARCIMBOLDO_BORGES that employs tertiary structure libraries extracted from the Protein Data Bank; data analysis revealed an all ß-sheet structure. This is the first such structure solved by this method which should be applicable to any protein composed entirely of ß-sheets. The A46(1-83) structure itself is a ß-sandwich containing a co-purified molecule of myristic acid inside a hydrophobic pocket and represents a previously unknown lipid-binding fold. Mass spectrometry analysis confirmed the presence of long-chain fatty acids in both N-terminal and full-length A46; mutation of the hydrophobic pocket reduced the lipid content. Using a combination of high resolution X-ray structures of the N- and C-terminal domains and SAXS analysis of full-length protein A46(1-240), we present here a structural model of A46 in a tetrameric assembly. Integrating affinity measurements and structural data, we propose how A46 simultaneously interferes with several TIR-domain containing proteins to inhibit NF-κB activation and postulate that A46 employs a bipartite binding arrangement to sequester the host immune adaptors TRAM and MyD88.


Assuntos
Vaccinia virus/química , Vaccinia virus/metabolismo , Proteínas Virais/química , Sequência de Aminoácidos , Cristalografia por Raios X , Escherichia coli , Células HEK293 , Humanos , Espectrometria de Massas , Modelos Moleculares , Conformação Proteica em Folha beta , Estrutura Quaternária de Proteína , Espalhamento a Baixo Ângulo , Espectrometria de Massas por Ionização por Electrospray , Proteínas Virais/metabolismo
12.
Anal Bioanal Chem ; 408(16): 4209-17, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27020928

RESUMO

Liquid-phase electrophoresis either in the classical capillary format or miniaturized (chip CE) is a valuable tool for quality control of virus preparations and for targeting questions related to conformational changes of viruses during infection. We present an in vitro assay to follow the release of the RNA genome from a human rhinovirus (common cold virus) by using a molecular beacon (MB) and chip CE. The MB, a probe that becomes fluorescent upon hybridization to a complementary sequence, was designed to bind close to the 3' end of the viral genome. Addition of Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), a well-known additive for reduction of bleaching and blinking of fluorophores in fluorescence microscopy, to the background electrolyte increased the sensitivity of our chip CE set-up. Hence, a fast, sensitive and straightforward method for the detection of viral RNA is introduced. Additionally, challenges of our assay will be discussed. In particular, we found that (i) desalting of virus preparations prior to analysis increased the recorded signal and (ii) the MB-RNA complex signal decreased with the time of virus storage at -70 °C. This suggests that 3'-proximal sequences of the viral RNA, if not the whole genome, underwent degradation during storage and/or freezing and thawing. In summary, we demonstrate, for two independent virus batches, that chip electrophoresis can be used to monitor MB hybridization to RNA released upon incubation of the native virus at 56 °C. Graphical Abstract Schematic of the study strategy: RNA released from HRV-A2 is detected by chip electrophoresis through the increase in fluorescence after genom complexation to a cognate molecular beacon.


Assuntos
Eletroforese Capilar/métodos , Infecções por Picornaviridae/virologia , RNA Viral/química , Rhinovirus/isolamento & purificação , Cromanos/química , Eletroforese Capilar/instrumentação , Fluorescência , Corantes Fluorescentes/química , Humanos , RNA Viral/genética , Rhinovirus/genética
13.
Protein Sci ; 24(12): 1979-96, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26384734

RESUMO

Messenger RNA is recruited to the eukaryotic ribosome by a complex including the eukaryotic initiation factor (eIF) 4E (the cap-binding protein), the scaffold protein eIF4G and the RNA helicase eIF4A. To shut-off host-cell protein synthesis, eIF4G is cleaved during picornaviral infection by a virally encoded proteinase; the structural basis of this reaction and its stimulation by eIF4E is unclear. We have structurally and biochemically investigated the interaction of purified foot-and-mouth disease virus (FMDV) leader proteinase (Lb(pro)), human rhinovirus 2 (HRV2) 2A proteinase (2A(pro)) and coxsackievirus B4 (CVB4) 2A(pro) with purified eIF4GII, eIF4E and the eIF4GII/eIF4E complex. Using nuclear magnetic resonance (NMR), we completed (13)C/(15) N sequential backbone assignment of human eIF4GII residues 551-745 and examined their binding to murine eIF4E. eIF4GII551-745 is intrinsically unstructured and remains so when bound to eIF4E. NMR and biophysical techniques for determining stoichiometry and binding constants revealed that the papain-like Lb(pro) only forms a stable complex with eIF4GII(551-745) in the presence of eIF4E, with KD values in the low nanomolar range; Lb(pro) contacts both eIF4GII and eIF4E. Furthermore, the unrelated chymotrypsin-like 2A(pro) from HRV2 and CVB4 also build a stable complex with eIF4GII/eIF4E, but with K(D) values in the low micromolar range. The HRV2 enzyme also forms a stable complex with eIF4E; however, none of the proteinases tested complex stably with eIF4GII alone. Thus, these three picornaviral proteinases have independently evolved to establish distinct triangular heterotrimeric protein complexes that may actively target ribosomes involved in mRNA recruitment to ensure efficient host cell shut-off.


Assuntos
Fator de Iniciação Eucariótico 4G/química , Fator de Iniciação Eucariótico 4G/metabolismo , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Picornaviridae/enzimologia , Animais , Domínio Catalítico , Fator de Iniciação 4E em Eucariotos/metabolismo , Evolução Molecular , Interações Hospedeiro-Patógeno , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Camundongos , Modelos Moleculares , Picornaviridae/química , Picornaviridae/fisiologia , Ligação Proteica , Proteínas Virais/química , Proteínas Virais/metabolismo
14.
Sci Rep ; 5: 8769, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25740212

RESUMO

The voltage-gated potassium channel family (Kv) constitutes the most diverse class of ion channels in the nervous system. Dipeptidyl peptidase 10 (DPP10) is an inactive peptidase that modulates the electrophysiological properties, cell-surface expression and subcellular localization of voltage-gated potassium channels. As a consequence, DPP10 malfunctioning is associated with neurodegenerative conditions like Alzheimer and fronto-temporal dementia, making this protein an attractive drug target. In this work, we report the crystal structure of DPP10 and compare it to that of DPP6 and DPP4. DPP10 belongs to the S9B serine protease subfamily and contains two domains with two distinct folds: a ß-propeller and a classical α/ß-hydrolase fold. The catalytic serine, however, is replaced by a glycine, rendering the protein enzymatically inactive. Difference in the entrance channels to the active sites between DPP10 and DPP4 provide an additional rationale for the lack of activity. We also characterize the DPP10 dimer interface focusing on the alternative approach for designing drugs able to target protein-protein interactions.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/química , Modelos Moleculares , Conformação Proteica , Domínio Catalítico , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Glicosilação , Humanos , Neurônios/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Canais de Potássio Shal/metabolismo
15.
J Biol Chem ; 289(6): 3749-62, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24356965

RESUMO

Successful vaccinia virus (VACV) replication in the host requires expression of viral proteins that interfere with host immunity, such as antagonists of the activation of the proinflammatory transcription factor NF-κB. Two such VACV proteins are A46 and A52. A46 interacts with the Toll-like receptor/interleukin-1R (TIR) domain of Toll-like receptors and intracellular adaptors such as MAL (MyD88 adapter-like), TRAM (TIR domain-containing adapter-inducing interferon-ß (TRIF)-related adaptor molecule), TRIF, and MyD88, whereas A52 binds to the downstream signaling components TRAF6 and IRAK2. Here, we characterize A46 biochemically, determine by microscale thermophoresis binding constants for the interaction of A46 with the TIR domains of MyD88 and MAL, and present the 2.0 Å resolution crystal structure of A46 residues 87-229. Full-length A46 behaves as a tetramer; variants lacking the N-terminal 80 residues are dimeric. Nevertheless, both bind to the Toll-like receptor domains of MAL and MyD88 with KD values in the low µm range. Like A52, A46 also shows a Bcl-2-like fold but with biologically relevant differences from that of A52. Thus, A46 uses helices α4 and α6 to dimerize, compared with the α1-α6 face used by A52 and other Bcl-2 like VACV proteins. Furthermore, the loop between A46 helices α4-α5 is flexible and shorter than in A52; there is also evidence for an intramolecular disulfide bridge between consecutive cysteine residues. We used molecular docking to propose how A46 interacts with the BB loop of the TRAM TIR domain. Comparisons of A46 and A52 exemplify how subtle changes in viral proteins with the same fold lead to crucial differences in biological activity.


Assuntos
Simulação de Acoplamento Molecular , NF-kappa B/antagonistas & inibidores , Vaccinia virus/química , Proteínas Virais/química , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , NF-kappa B/química , NF-kappa B/genética , NF-kappa B/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Vaccinia virus/genética , Vaccinia virus/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA