Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(3): e202316719, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38054955

RESUMO

A novel vanadium hydroxide-phosphate, NH4 VPO4 OH, was synthesized hydrothermally in V2 O5 -NH4 H2 PO4 -citric acid system at 230 °C. It was characterized by XRD, TG-DSC, SEM-EDX, FTIR and NMR spectroscopy. NH4 VPO4 OH is isostructural with NH4 GaPO4 OH and features edge-sharing chains of VO6 octahedra. These chains running along [010] direction of the unit cell are connected by phosphate tetrahedra to form infinite layers parallel to the (100) plane. Ammonium cations are embedded between the heteropolyhedral layers. According to the thermodynamic and NMR measurements supported by the first-principles calculations, NH4 VPO4 OH presents a rare case of Haldane spin system with spin S=1 based on V3+ ions.

2.
Dalton Trans ; 52(46): 17426-17437, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37947446

RESUMO

Advanced ionic conductors are crucial for a large variety of contemporary technologies spanning solid state ion batteries, fuel cells, gas sensors, water desalination, etc. In this work, we report on a new member of KTiOPO4-structured materials, NaGaPO4F, with sodium-ion conductivity. NaGaPO4F has been obtained for the first time via a facile two-step synthesis consisting of a hydrothermal preparation of an ammonia-based precursor, NH4GaPO4F, followed by an ion exchange reaction with NaNO3. Its crystal structure was precisely refined using a combination of synchrotron X-ray powder diffraction and electron diffraction tomography. The material is thermally stable upon 450 °C showing no significant structural transformations or degradation but only a ∼1% cell volume expansion. Na-ion mobility in NaGaPO4F was investigated by a joint experimental and computational approach comprising solid-state nuclear magnetic resonance (NMR) and density functional theory (DFT). DFT and bond-valence site energy (BVSE) calculations reveal 3D diffusion of sodium in the [GaPO4F] framework with migration barriers amounting to 0.22 and 0.44 eV, respectively, while NMR yields 0.3-0.5 eV that, being coupled with a calculated bandgap of ∼4.25 eV, makes NaGaPO4F a promising fast Na-ion conductor.

3.
ACS Appl Mater Interfaces ; 15(37): 43767-43777, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37681324

RESUMO

The efficient operation of metal-ion batteries in harsh environments, such as at temperatures below -20 °C or at high charge/discharge rates required for EV applications, calls for a careful selection of electrode materials. In this study, we report advantages associated with the solid solution (de)intercalation over the two-phase (de)intercalation pathway and identify the main sources of performance limitations originating from the two mechanisms. To isolate the (de)intercalation pathway as the main variable, we focused on two cathode materials for Na-ion batteries: a recently developed KTiOPO4-type NaVPO4F and a well-studied Na3V2(PO4)2F3. These materials have the same elemental composition, operate within the same potential range, and demonstrate very close ionic diffusivities, yet follow different (de)intercalation routes. To avoid any interpretation uncertainties, we obtained these materials in the form of particles with merely identical morphology and size. A detailed electrochemical study revealed a much lower capacity and energy density retention for phase-transforming Na3V2(PO4)2F3 compared to NaVPO4F, which exhibits a single-phase behavior over a wide range of Na concentrations. The reasons for the inferior rate capability and temperature tolerance for the phase-separating Na3V2(PO4)2F3 material should be affiliated with slow phase boundary propagation. We hope that the comprehensive information on limiting factors provided for both mechanisms is useful for the further optimization of electrode materials toward a new generation of high-power and low-temperature metal-ion batteries.

4.
Nat Commun ; 13(1): 4097, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835761

RESUMO

Polyanion compounds offer a playground for designing prospective electrode active materials for sodium-ion storage due to their structural diversity and chemical variety. Here, by combining a NaVPO4F composition and KTiOPO4-type framework via a low-temperature (e.g., 190 °C) ion-exchange synthesis approach, we develop a high-capacity and high-voltage positive electrode active material. When tested in a coin cell configuration in combination with a Na metal negative electrode and a NaPF6-based non-aqueous electrolyte solution, this cathode active material enables a discharge capacity of 136 mAh g-1 at 14.3 mA g-1 with an average cell discharge voltage of about 4.0 V. Furthermore, a specific discharge capacity of 123 mAh g-1 at 5.7 A g-1 is also reported for the same cell configuration. Through ex situ and operando structural characterizations, we also demonstrate that the reversible Na-ion storage at the positive electrode occurs mostly via a solid-solution de/insertion mechanism.

5.
Inorg Chem ; 60(16): 12237-12246, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34351137

RESUMO

To realize high-power performance, lithium-ion batteries require stable, environmentally benign, and economically viable noncarbonaceous anode materials capable of operating at high rates with low strain during charge-discharge. In this paper, we report the synthesis, crystal structure, and electrochemical properties of a new titanium-based member of the MPO4 phosphate series adopting the α-CrPO4 structure type. α-TiPO4 has been obtained by thermal decomposition of a novel hydrothermally prepared fluoride phosphate, NH4TiPO4F, at 600 °C under a hydrogen atmosphere. The crystal structure of α-TiPO4 is refined from powder X-ray diffraction data using a Rietveld method and verified by electron diffraction and high-resolution scanning transmission electron microscopy, whereas the chemical composition is confirmed by IR, energy-dispersive X-ray, electron paramagnetic resonance, and electron energy loss spectroscopies. Carbon-coated α-TiPO4/C demonstrates reversible electrochemical activity ascribed to the Ti3+/Ti2+ redox transition delivering 125 mAh g-1 specific capacity at C/10 in the 1.0-3.1 V versus Li+/Li potential range with an average potential of ∼1.5 V, exhibiting good rate capability and stable cycling with volume variation not exceeding 0.5%. Below 0.8 V, the material undergoes a conversion reaction, further revealing capacitive reversible electrochemical behavior with an average specific capacity of 270 mAh g-1 at 1C in the 0.7-2.9 V versus Li+/Li potential range. This work suggests a new synthesis route to metastable titanium-containing phosphates holding prospective to be used as negative electrode materials for metal-ion batteries.

6.
Inorg Chem ; 60(8): 5497-5506, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33829762

RESUMO

Lithium iron phosphate, LiFePO4, a widely used cathode material in commercial Li-ion batteries, unveils a complex defect structure, which is still being deciphered. Using a combined computational and experimental approach comprising density functional theory (DFT)+U and molecular dynamics calculations and X-ray and neutron diffraction, we provide a comprehensive characterization of various OH point defects in LiFePO4, including their formation, dynamics, and localization in the interstitial space and at Li, Fe, and P sites. It is demonstrated that one, two, and four (five) OH groups can effectively stabilize Li, Fe, and P vacancies, respectively. The presence of D (H) at both Li and P sites for hydrothermally synthesized deuterium-enriched LiFePO4 is confirmed by joint X-ray and neutron powder diffraction structure refinement at 5 K that also reveals a strong deficiency of P of 6%. The P occupancy decrease is explained by the formation of hydrogarnet-like P/4H and P/5H defects, which have the lowest formation energies among all considered OH defects. Molecular dynamics simulation shows a rich structural diversity of these defects, with OH groups pointing both inside and outside vacant P tetrahedra creating numerous energetically close conformers, which hinders their explicit localization with diffraction-based methods solely. The discovered conformers include structural water molecules, which are only by 0.04 eV/atom H higher in energy than separate OH defects.

7.
Nat Commun ; 11(1): 4976, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009387

RESUMO

Metal-ion batteries are key enablers in today's transition from fossil fuels to renewable energy for a better planet with ingeniously designed materials being the technology driver. A central question remains how to wisely manipulate atoms to build attractive structural frameworks of better electrodes and electrolytes for the next generation of batteries. This review explains the underlying chemical principles and discusses progresses made in the rational design of electrodes/solid electrolytes by thoroughly exploiting the interplay between composition, crystal structure and electrochemical properties. We highlight the crucial role of advanced diffraction, imaging and spectroscopic characterization techniques coupled with solid state chemistry approaches for improving functionality of battery materials opening emergent directions for further studies.

8.
Nat Commun ; 11(1): 1484, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32198379

RESUMO

The rapid progress in mass-market applications of metal-ion batteries intensifies the development of economically feasible electrode materials based on earth-abundant elements. Here, we report on a record-breaking titanium-based positive electrode material, KTiPO4F, exhibiting a superior electrode potential of 3.6 V in a potassium-ion cell, which is extraordinarily high for titanium redox transitions. We hypothesize that such an unexpectedly major boost of the electrode potential benefits from the synergy of the cumulative inductive effect of two anions and charge/vacancy ordering. Carbon-coated electrode materials display no capacity fading when cycled at 5C rate for 100 cycles, which coupled with extremely low energy barriers for potassium-ion migration of 0.2 eV anticipates high-power applications. Our contribution shows that the titanium redox activity traditionally considered as "reducing" can be upshifted to near-4V electrode potentials thus providing a playground to design sustainable and cost-effective titanium-containing positive electrode materials with promising electrochemical characteristics.

9.
ACS Appl Mater Interfaces ; 11(13): 12431-12440, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30827092

RESUMO

In this paper, we report on a novel α-VPO4 phosphate adopting the α-CrPO4 type structure as a promising anode material for rechargeable metal-ion batteries. Obtained by heat treatment of a structurally related hydrothermally prepared KTiOPO4-type NH4VOPO4 precursor under reducing conditions, the α-VPO4 material appears stable in a wide temperature range and possesses an interesting "sponged" needle-like particle morphology. The electrochemical performance of α-VPO4 as the anode material was examined in Li-, Na-, and K-based cells. The carbon-coated α-VPO4/C composite exhibits 185, 110, and 37 mA h/g specific capacities respectively at the first discharge and around 120, 80, and 30 mA h/g at consecutive cycles at a C/10 rate. The considerable capacity drop after the first cycle in Li and Na cells is presumably due to irreversible alkali ion consumption taking place upon alkali-ion de/insertion. The EDX analysis of the recovered electrodes revealed an uptake of ∼23% of Na after the first discharge with significant cell parameter alteration validated by operando XRD measurements. In contrast to the known ß-VPO4 anode materials, both Li and Na de/insertion into the new α-VPO4 proceed via an intercalation mechanism with the parent structural framework preserved but not via a conversion mechanism. The dimensionality of alkali-ion migration pathways and diffusion energy barriers was analyzed by the BVEL approach. Na-ion diffusion coefficients measured by the potentiostatic intermittent titration technique are in the range of (0.3-1.0)·10-10 cm2/s, anticipating α-VPO4 as a prospective high-power anode material for Na-ion batteries.

10.
IUCrJ ; 2(Pt 1): 85-94, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25610630

RESUMO

To satisfy the needs of rapidly growing applications, Li-ion batteries require further significant improvements of their key properties: specific energy and power, cyclability, safety and costs. The first generation of cathode materials for Li-ion batteries based on mixed oxides with either spinel or rock-salt derivatives has already been widely commercialized, but the potential to improve the performance of these materials further is almost exhausted. Li and transition metal inorganic compounds containing different polyanions are now considered as the most promising cathode materials for the next generation of Li-ion batteries. Further advances in cathode materials are considered to lie in combining different anions [such as (XO4) (n-) and F(-)] in the anion sublattice, which is expected to enhance the specific energy and power of these materials. This review focuses on recent advances related to the new class of cathode materials for Li-ion batteries containing phosphate and fluoride anions. Special attention is given to their crystal structures and the relationships between structure and properties, which are important for their possible practical applications.

11.
Beilstein J Nanotechnol ; 4: 860-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367755

RESUMO

In the search for high-energy materials, novel 3D-fluorophosphates, Li2Co1- x Fe x PO4F and Li2Co1- x Mn x PO4F, have been synthesized. X-ray diffraction and scanning electron microscopy have been applied to analyze the structural and morphological features of the prepared materials. Both systems, Li2Co1- x Fe x PO4F and Li2Co1- x Mn x PO4F, exhibited narrow ranges of solid solutions: x ≤ 0.3 and x ≤ 0.1, respectively. The Li2Co0.9Mn0.1PO4F material demonstrated a reversible electrochemical performance with an initial discharge capacity of 75 mA·h·g(-1) (current rate of C/5) upon cycling between 2.5 and 5.5 V in 1 M LiBF4/TMS electrolyte. Galvanostatic measurements along with cyclic voltammetry supported a single-phase de/intercalation mechanism in the Li2Co0.9Mn0.1PO4F material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA