Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Transplant ; 23(7): 935-945, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37080464

RESUMO

Advances in immunosuppression have been relatively stagnant over the past 2 decades, and transplant recipients continue to experience long-term morbidity associated with immunosuppression regimens. Strategies to reduce or eliminate the dosage of immunosuppression medications are needed. We discovered a novel administration strategy using the classic adjuvant alum to condition murine islet transplant recipients, known as adjuvant conditioning (AC), to expand both polymorphonuclear and monocytic myeloid-derived suppressive cells (MDSCs) in vivo. These AC MDSCs potently suppress T cell proliferation when cultured together in vitro. AC MDSCs also facilitate naïve CD4+ T cells to differentiate into regulatory T cells. In addition, we were able to demonstrate a significant delay in alloislet rejection compared with that by saline-treated control following adjuvant treatment in a MDSC-dependent manner. Furthermore, AC MDSCs produce significantly more interleukin (IL)-10 than saline-treated controls, which we demonstrated to be critical for the increased T cell suppressor function of AC MDSCs as well as the observed protective effect of AC against alloislet rejection. Our data suggest that adjuvant-related therapeutics designed to expand MDSCs could be a useful strategy to prevent transplant rejection and curb the use of toxic immunosuppressive regimens currently used in transplant patients.


Assuntos
Células Supressoras Mieloides , Humanos , Animais , Camundongos , Imunossupressores/farmacologia , Monócitos , Linfócitos T CD8-Positivos , Terapia de Imunossupressão
2.
Front Oncol ; 9: 737, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31448237

RESUMO

Post-transplant (post-Tx) kidney cancer has become the second-highest cause of death in kidney recipients. Late diagnosis and treatment are the main reasons for high mortality. Further research into early diagnosis and potential treatment is therefore required. In this current study, through genome-wide RNA-Seq profile analysis of post-Tx malignant blood samples and post-Tx non-malignant control blood samples (CTRL-Tx), we found Rap GTPase Interactor (RADIL) and Aprataxin (APTX) to be the most meaningful markers for cancer diagnosis. Receiver operating characteristic (ROC) curve analysis showed that the area under the curve (AUC) of the RADIL-APTX signature model was 0.92 (P < 0.0001). Similarly, the AUC of RADIL alone was 0.91 (P < 0.0001) and that of APTX was 0.81 (P = 0.001). Additionally, using a semi-supervised method, we found that RADIL alone could better predict malignancies in kidney transplantation recipients than APTX alone. Kaplan-Meier analysis indicated that RADIL was expressed significantly higher in the early stages (I and II) of kidney, liver, stomach, and pancreatic cancer, suggesting the potential use of RADIL in early diagnosis. Multivariable Cox regression analysis found that RADIL together with other factors (including age, stage III, stage IV and CD8+ T cells) play a key role in kidney cancer development. Among those factors, RADIL could promote kidney cancer development (HR > 1, P < 0.05) while CD8+ T cells could inhibit kidney cancer development (HR < 1, P < 0.05). RADIL may be a new immunotherapy target for kidney cancer post kidney transplantation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA