Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Prenat Diagn ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862387

RESUMO

OBJECTIVE: To evaluate the diagnostic yield of exome sequencing (ES) in fetuses and neonates with prenatally detected congenital diaphragmatic hernia (CDH) and normal copy number variant (CNV) analysis. METHODS: We conducted a retrospective cohort study of prenatally diagnosed CDH cases seen between 2019 and 2022. All cases who underwent prenatal or postnatal genetic testing were reviewed. The results from the ES analysis that identified pathogenic or likely pathogenic single nucleotide variants are described. RESULTS: In total, 133 fetuses with CDH were seen, of whom 98 (74%) had an isolated CDH and 35 (26%) had a complex CDH (associated structural anomalies) on prenatal examination. ES was performed in 68 cases, and eight pathogenic or likely pathogenic variants were found, accounting for a 12% diagnostic yield (10% [5/50] in isolated cases and 17% [3/18] in complex CDH). CONCLUSIONS: In 12% of fetuses and neonates with CDH and normal CNV analysis results, pathogenic or likely pathogenic variants were identified with ES. These data indicate that there is a substantial diagnostic yield when offering ES in prenatally detected CDH, both in complex and isolated cases.

2.
Front Genet ; 14: 1304520, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259611

RESUMO

Introduction: Rapid exome sequencing (rES) has become the first-choice genetic test for critically ill patients, mostly neonates, young infants, or fetuses in prenatal care, in time-sensitive situations and when it is expected that the genetic test result may guide clinical decision making. The implementation of rES has revolutionized medicine by enabling timely identification of genetic causes for various rare diseases. The utilization of rES has increasingly been recognized as an essential diagnostic tool for the identification of complex and undiagnosed genetic disorders. Methods: We conducted a retrospective evaluation of our experiences with rES performed on 575 critically ill patients from various age groups (prenatal to adulthood), over a four-year period (2016-2019). These patients presented with a wide spectrum of rare diseases, including but not limited to neurological disorders, severe combined immune deficiency, and cancer. Results: During the study period, there was a significant increase in rES referrals, with a rise from a total of two referrals in Q1-2016 to 10 referrals per week in Q4-2019. The median turnaround time (TAT) decreased from 17 to 11 days in the period 2016-2019, with an overall median TAT of 11 days (IQR 8-15 days). The overall diagnostic yield for this cohort was 30.4%, and did not significantly differ between the different age groups (e.g. adults 22.2% vs children 31.0%; p-value 0.35). However, variability in yield was observed between clinical entities: craniofacial anomalies yielded 58.3%, while for three clinical entities (severe combined immune deficiency, aneurysm, and hypogonadotropic hypogonadism) no diagnoses were obtained. Discussion: Importantly, whereas clinical significance is often only attributed to a conclusive diagnosis, we also observed impact on clinical decision-making for individuals in whom no genetic diagnosis was established. Hence, our experience shows that rES has an important role for patients of all ages and across the broad spectrum of rare diseases to impact clinical outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA