Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Microorganisms ; 8(6)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545283

RESUMO

Outbreaks of anthrax occur sporadically in Australia and most commonly in the "anthrax belt", a region which extends from southern Queensland through the centre of New South Wales and into northern Victoria. Little is known about the epidemiological links between Bacillus anthracis isolates taken from different outbreaks and the diversity of strains within Australia. We used multiple-locus variable-number tandem repeat analysis employing 25 markers (MLVA25) to genotype 99 B. anthracis isolates from an archival collection of Australian isolates. MLVA25 genotyping revealed eight unique genotypes which clustered within the previously defined A3 genotype of B. anthracis. Genotyping of B. anthracis strains from outbreaks of disease in Victoria identified the presence of multiple genotypes associated with these outbreaks. The geographical distribution of genotypes within Australia suggests that a single genotype was introduced into the eastern states of Australia, followed by the spread and localised differentiation of the pathogen (MLVA25 genotypes MG1-MG6) throughout the anthrax belt. In contrast, unexplained occurrences of disease in areas outside of this anthrax belt which are associated with different genotypes, (MLVA25 genotypes MG7 and MG8) indicate separate introductions of B. anthracis into Australia.

2.
Transbound Emerg Dis ; 67(6): 2494-2506, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32311239

RESUMO

Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hooved animals. Global outbreaks have highlighted the significant economic, trade, psychosocial and animal welfare impacts that can arise from the detection of disease in previously 'FMD-free' countries. Rapid and early diagnosis provides significant advantages in disease control and minimization of deleterious consequences. We describe the process of further development and validation of a reverse-transcription loop-mediated isothermal amplification foot-and-mouth disease virus (RT-LAMP-FMDV) test, using a published LAMP primer set, for use in the field. An internal positive control (IPC) was designed and introduced for use with the assay to mitigate any intrinsic interference from the unextracted field samples and avoid false negatives. Further modifications were included to improve the speed and operability of the test, for use by non-laboratory trained staff operating under field conditions, with shelf-stable reaction kits which require a minimum of liquid handling skills. Comparison of the assay performance with an established laboratory-based real-time reverse transcriptase PCR (rRT-PCR) test targeting the 3D region of FMD virus (Tetracore Inc) was investigated. LAMP has the potential to complement current laboratory diagnostics, such as rRT-PCR, as a preliminary tool in the investigation of FMD. We describe a strategic approach to validation of the test for use in the field using extracted RNA samples of various serotypes from Thailand and then finally unextracted field samples collected from FMD-suspected animals (primarily oral lesion swabs) from Bhutan and Australia. The statistical approach to validation was performed by Frequentist and Bayesian latent class methods, which both confirmed this new RT-LAMP-FMDV test as fit-for-purpose as a herd diagnostic tool with diagnostic specificity >99% and sensitivity 79% (95% Bayesian credible interval: 65, 90%) on unextracted field samples (oral swabs).


Assuntos
Vírus da Febre Aftosa/isolamento & purificação , Febre Aftosa/diagnóstico , Técnicas de Diagnóstico Molecular/veterinária , Técnicas de Amplificação de Ácido Nucleico/veterinária , Animais , Austrália , Teorema de Bayes , Butão , Febre Aftosa/virologia , Vírus da Febre Aftosa/genética , Sensibilidade e Especificidade , Tailândia
3.
Nat Microbiol ; 4(8): 1337-1343, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31086311

RESUMO

Bacillus anthracis is a spore-forming, Gram-positive bacterium responsible for anthrax, an acute infection that most significantly affects grazing livestock and wild ungulates, but also poses a threat to human health. The geographic extent of B. anthracis is poorly understood, despite multi-decade research on anthrax epizootic and epidemic dynamics; many countries have limited or inadequate surveillance systems, even within known endemic regions. Here, we compile a global occurrence dataset of human, livestock and wildlife anthrax outbreaks. With these records, we use boosted regression trees to produce a map of the global distribution of B. anthracis as a proxy for anthrax risk. We estimate that 1.83 billion people (95% credible interval (CI): 0.59-4.16 billion) live within regions of anthrax risk, but most of that population faces little occupational exposure. More informatively, a global total of 63.8 million poor livestock keepers (95% CI: 17.5-168.6 million) and 1.1 billion livestock (95% CI: 0.4-2.3 billion) live within vulnerable regions. Human and livestock vulnerability are both concentrated in rural rainfed systems throughout arid and temperate land across Eurasia, Africa and North America. We conclude by mapping where anthrax risk could disrupt sensitive conservation efforts for wild ungulates that coincide with anthrax-prone landscapes.


Assuntos
Doenças dos Animais/epidemiologia , Antraz/epidemiologia , Antraz/veterinária , Bacillus anthracis/fisiologia , Animais , Animais Selvagens/microbiologia , Antraz/microbiologia , Surtos de Doenças , Microbiologia Ambiental , Geografia , Humanos , Gado/microbiologia , Modelos Biológicos , Saúde Pública , Medição de Risco , Fatores de Risco
4.
PLoS One ; 13(9): e0203853, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30204797

RESUMO

Cases of vomiting and diarrhoea were reported in racing pigeons in Western Australia in May, 2016. Morbidity and mortality rates were high. Similar clinical disease was seen in Victoria in December and by early 2017 had been reported in all states except the Northern Territory, in different classes of domestic pigeon-racing, fancy and meat bird-and in a flock of feral pigeons. Autopsy findings were frequently unremarkable; histological examination demonstrated significant hepatic necrosis as the major and consistent lesion, often with minimal inflammatory infiltration. Negative contrast tissue suspension and thin section transmission electron microscopy of liver demonstrated virus particles consistent with a member of the Reoviridae. Inoculation of trypsin-treated Vero, MDBK and MA-104 cell lines resulted in cytopathic changes at two days after infection. Next generation sequencing was undertaken using fresh liver samples and a previously undescribed group A rotavirus (genotype G18P[17]) of avian origin was identified and the virus was isolated in several cell lines. A q-RT-PCR assay was developed and used to screen a wider range of samples, including recovered birds. Episodes of disease have continued to occur and to reoccur in previously recovered lofts, with variable virulence reported. This is the first report of a rotavirus associated with hepatic necrosis in any avian species.


Assuntos
Doenças das Aves/virologia , Columbidae/virologia , Hepatopatias/veterinária , Infecções por Rotavirus/veterinária , Rotavirus , Animais , Austrália , Doenças das Aves/patologia , Bovinos , Chlorocebus aethiops , Diarreia/patologia , Diarreia/veterinária , Diarreia/virologia , Fígado/virologia , Hepatopatias/patologia , Hepatopatias/virologia , Necrose/patologia , Necrose/veterinária , Necrose/virologia , Infecções por Rotavirus/patologia , Células Vero , Vômito/patologia , Vômito/veterinária , Vômito/virologia
5.
Front Microbiol ; 9: 419, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29662468

RESUMO

Ralstonia solanacearum species complex phylotype IV strains, which have been primarily isolated from Indonesia, Australia, Japan, Korea, and Malaysia, have undergone recent taxonomic and nomenclatural changes to be placed in the species Ralstonia syzygii. This species contains three subspecies; Ralstonia syzygii subsp. syzygii, a pathogen causing Sumatra disease of clove trees in Indonesia, Ralstonia syzygii subsp. indonesiensis, the causal pathogen of bacterial wilt disease on a wide range of host plants, and Ralstonia syzygii subsp. celebesensis, the causal pathogen of blood disease on Musa spp. In Indonesia, these three subspecies have devastated the cultivation of susceptible host plants which have high economic value. Limited knowledge on the ecology and epidemiology of the diseases has hindered the development of effective control strategies. In this review, we provide insights into the ecology, epidemiology and disease control of these three subspecies of Ralstonia syzygii.

6.
PLoS Negl Trop Dis ; 10(6): e0004689, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27280981

RESUMO

The ecology and distribution of B. anthracis in Australia is not well understood, despite the continued occurrence of anthrax outbreaks in the eastern states of the country. Efforts to estimate the spatial extent of the risk of disease have been limited to a qualitative definition of an anthrax belt extending from southeast Queensland through the centre of New South Wales and into northern Victoria. This definition of the anthrax belt does not consider the role of environmental conditions in the distribution of B. anthracis. Here, we used the genetic algorithm for rule-set prediction model system (GARP), historical anthrax outbreaks and environmental data to model the ecological niche of B. anthracis and predict its potential geographic distribution in Australia. Our models reveal the niche of B. anthracis in Australia is characterized by a narrow range of ecological conditions concentrated in two disjunct corridors. The most dominant corridor, used to redefine a new anthrax belt, parallels the Eastern Highlands and runs from north Victoria to central east Queensland through the centre of New South Wales. This study has redefined the anthrax belt in eastern Australia and provides insights about the ecological factors that limit the distribution of B. anthracis at the continental scale for Australia. The geographic distributions identified can help inform anthrax surveillance strategies by public and veterinary health agencies.


Assuntos
Antraz/epidemiologia , Antraz/veterinária , Bacillus anthracis/fisiologia , Surtos de Doenças/veterinária , Ecossistema , Mamíferos , Animais , Antraz/história , Austrália/epidemiologia , Surtos de Doenças/história , História do Século XIX , História do Século XX , História do Século XXI
7.
Microscopy (Oxf) ; 64(6): 445-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26323477

RESUMO

'Tubular aggregates' are morphologically distinct cytoplasmic structures that have been linked to a variety of pathological conditions. This report documents the presence of tubular aggregates in an insect cell line (C6/36 cells derived from Aedes albopictus) following inoculation of the cells with material derived from cell culture passaged homogenized Culex australicus mosquitoes. The tubular aggregates were detected in ∼2% of treated cells and had three morphological forms that were termed primary, secondary and tertiary, with progressively greater levels of structural complexity. The findings indicate that tubular aggregates can be induced in an insect cell culture system by an unidentified agent present in some mosquitoes.


Assuntos
Aedes/citologia , Culex/metabolismo , Microscopia Eletrônica/métodos , Animais , Linhagem Celular , Microtomia
8.
Prev Vet Med ; 120(3-4): 277-82, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25956134

RESUMO

Although diagnosis of anthrax can be made in the field with a peripheral blood smear, and in the laboratory with bacterial culture or molecular based tests, these tests require either considerable experience or specialised equipment. Here we report on the evaluation of the diagnostic sensitivity and specificity of a simple and rapid in-field diagnostic test for anthrax, the anthrax immunochromatographic test (AICT). The AICT detects the protective antigen (PA) component of the anthrax toxin present within the blood of an animal that has died from anthrax. The test provides a result in 15min and offers the advantage of avoiding the necessity for on-site necropsy and subsequent occupational risks and environmental contamination. The specificity of the test was determined by testing samples taken from 622 animals, not infected with Bacillus anthracis. Diagnostic sensitivity was estimated on samples taken from 58 animals, naturally infected with B. anthracis collected over a 10-year period. All samples used to estimate the diagnostic sensitivity and specificity of the AICT were also tested using the gold standard of bacterial culture. The diagnostic specificity of the test was estimated to be 100% (99.4-100%; 95% CI) and the diagnostic sensitivity was estimated to be 93.1% (83.3-98.1%; 95% CI) (Clopper-Pearson method). Four samples produced false negative AICT results. These were among 9 samples, all of which tested positive for B. anthracis by culture, where there was a time delay between collection and testing of >48h and/or the samples were collected from animals that were >48h post-mortem. A statistically significant difference (P<0.001; Fishers exact test) was found between the ability of the AICT to detect PA in samples from culture positive animals <48h post-mortem, 49 of 49, Se=100% (92.8-100%; 95% CI) compared with samples tested >48h post-mortem 5 of 9 Se=56% (21-86.3%; 95% CI) (Clopper-Pearson method). Based upon these results a post hoc cut-off for use of the AICT of 48h post-mortem was applied, Se=100% (92.8-100%; 95% CI) and Sp=100% (99.4-100%; 95% CI). The high diagnostic sensitivity and specificity and the simplicity of the AICT enables it to be used for active surveillance in areas with a history of anthrax, or used as a preliminary tool in investigating sudden, unexplained death in cattle.


Assuntos
Antraz/veterinária , Antígenos de Bactérias/sangue , Doenças dos Bovinos/diagnóstico , Testes Diagnósticos de Rotina/veterinária , Animais , Antraz/diagnóstico , Antraz/microbiologia , Austrália , Bovinos , Doenças dos Bovinos/microbiologia , Cromatografia de Afinidade/veterinária , Testes Diagnósticos de Rotina/normas , Sensibilidade e Especificidade
9.
Int J Syst Evol Microbiol ; 64(Pt 9): 3087-3103, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24944341

RESUMO

The Ralstonia solanacearum species complex has long been recognized as a group of phenotypically diverse strains that can be subdivided into four phylotypes. Using a polyphasic taxonomic approach on an extensive set of strains, this study provides evidence for a taxonomic and nomenclatural revision of members of this complex. Data obtained from phylogenetic analysis of 16S-23S rRNA ITS gene sequences, 16S-23S rRNA intergenic spacer (ITS) region sequences and partial endoglucanase (egl) gene sequences and DNA-DNA hybridizations demonstrate that the R. solanacearum species complex comprises three genospecies. One of these includes the type strain of Ralstonia solanacearum and consists of strains of R. solanacearum phylotype II only. The second genospecies includes the type strain of Ralstonia syzygii and contains only phylotype IV strains. This genospecies is subdivided into three distinct groups, namely R. syzygii, the causal agent of Sumatra disease on clove trees in Indonesia, R. solanacearum phylotype IV strains isolated from different host plants mostly from Indonesia, and strains of the blood disease bacterium (BDB), the causal agent of the banana blood disease, a bacterial wilt disease in Indonesia that affects bananas and plantains. The last genospecies is composed of R. solanacearum strains that belong to phylotypes I and III. As these genospecies are also supported by phenotypic data that allow the differentiation of the three genospecies, the following taxonomic proposals are made: emendation of the descriptions of Ralstonia solanacearum and Ralstonia syzygii and descriptions of Ralstonia syzygii subsp. nov. (type strain R 001(T) = LMG 10661(T) = DSM 7385(T)) for the current R. syzygii strains, Ralstonia syzygii subsp. indonesiensis subsp. nov. (type strain UQRS 464(T) = LMG 27703(T) = DSM 27478(T)) for the current R. solanacearum phylotype IV strains, Ralstonia syzygii subsp. celebesensis subsp. nov. (type strain UQRS 627(T) = LMG 27706(T) = DSM 27477(T)) for the BDB strains and Ralstonia pseudosolanacearum sp. nov. (type strain UQRS 461(T) = LMG 9673(T) = NCPPB 1029(T)) for the strains of R. solanacearum phylotypes I and III.


Assuntos
Filogenia , Ralstonia solanacearum/classificação , Ralstonia/classificação , Composição de Bases , DNA Bacteriano/genética , DNA Espaçador Ribossômico/genética , Ácidos Graxos/química , Indonésia , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Doenças das Plantas/microbiologia , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Análise de Sequência de DNA
10.
J Vet Diagn Invest ; 25(1): 35-44, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23345269

RESUMO

Virus was detected in the central nervous system (CNS) tissue of 11 horses from Victoria that died displaying neurological symptoms during an outbreak of disease in Australia in 2011. Five horses were identified as being infected with Murray Valley encephalitis virus (MVEV) and 6 as being infected with West Nile virus subtype Kunjin (WNV(KUN)). Analysis of partial sequence information from the NS5 and E genes indicated that the MVEVs within the samples were highly homogenous and all belonged to lineage I, which is enzootic to the tropical regions of northern Australia. Likewise, analysis of partial NS5 and E gene and full genome sequences indicated that the WNV(KUN) within the samples were also highly homogenous and clustered with WNV lineage 1, clade b, which is consistent with other WNV(KUN) isolates. Full genomes of 1 MVEV isolate and 2 WNV(KUN) isolates were sequenced and characterized. The genome sequences of Victorian WNV(KUN) are almost identical (3 amino acid differences) to that of the recently sequenced WNV isolate WNV(NSW2011). Metagenome sequencing directly from CNS tissue identified the presence of WNV(KUN) and MVEV within infected CNS tissue.


Assuntos
Surtos de Doenças/veterinária , Vírus da Encefalite do Vale de Murray/isolamento & purificação , Encefalite por Arbovirus/veterinária , Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/virologia , Febre do Nilo Ocidental/veterinária , Vírus do Nilo Ocidental/isolamento & purificação , Sequência de Aminoácidos , Animais , Sequência de Bases , Vírus da Encefalite do Vale de Murray/genética , Encefalite por Arbovirus/virologia , Cavalos , Dados de Sequência Molecular , Filogenia , RNA Viral/química , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Alinhamento de Sequência , Análise de Sequência de DNA , Vitória/epidemiologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/genética
11.
Virus Res ; 165(2): 207-13, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22387967

RESUMO

In late 2005, acute mortalities occurred in abalone on farms located in Victoria, Australia. Disease was associated with infection by an abalone herpes virus (AbHV). Subsequently, starting in 2006, the disease (abalone viral ganglioneuritis; AVG) was discovered in wild abalone in Victorian open waters. Currently, it continues to spread, albeit at a slow rate, along the Victorian coast-line. Here, we report on experimental transmission trials that were carried out by immersion using water into which diseased abalone had shed infectious viral particles. At various time points following exposure, naïve abalone were assessed by an AbHV-specific real-time PCR and histological analyses including in situ hybridization (ISH). Results demonstrated that while exposed abalone began displaying clinical signs of the disease from 60 hours post exposure (hpe), they tested positive for the presence of viral DNA at 36 hpe. Of further interest, the AbHV DNA probe used in the ISH assay detected the virus as early as 48 hpe.


Assuntos
Modelos Animais de Doenças , Herpesviridae/patogenicidade , Moluscos/virologia , Animais , Aquicultura , DNA Viral/genética , DNA Viral/isolamento & purificação , Herpesviridae/isolamento & purificação , Reação em Cadeia da Polimerase , Vitória , Eliminação de Partículas Virais
12.
PLoS One ; 6(9): e24356, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21931687

RESUMO

The Ralstonia solanacearum species complex includes R. solanacearum, R. syzygii, and the Blood Disease Bacterium (BDB). All colonize plant xylem vessels and cause wilt diseases, but with significant biological differences. R. solanacearum is a soilborne bacterium that infects the roots of a broad range of plants. R. syzygii causes Sumatra disease of clove trees and is actively transmitted by cercopoid insects. BDB is also pathogenic to a single host, banana, and is transmitted by pollinating insects. Sequencing and DNA-DNA hybridization studies indicated that despite their phenotypic differences, these three plant pathogens are actually very closely related, falling into the Phylotype IV subgroup of the R. solanacearum species complex. To better understand the relationships among these bacteria, we sequenced and annotated the genomes of R. syzygii strain R24 and BDB strain R229. These genomes were compared to strain PSI07, a closely related Phylotype IV tomato isolate of R. solanacearum, and to five additional R. solanacearum genomes. Whole-genome comparisons confirmed previous phylogenetic results: the three phylotype IV strains share more and larger syntenic regions with each other than with other R. solanacearum strains. Furthermore, the genetic distances between strains, assessed by an in-silico equivalent of DNA-DNA hybridization, unambiguously showed that phylotype IV strains of BDB, R. syzygii and R. solanacearum form one genomic species. Based on these comprehensive data we propose a revision of the taxonomy of the R. solanacearum species complex. The BDB and R. syzygii genomes encoded no obvious unique metabolic capacities and contained no evidence of horizontal gene transfer from bacteria occupying similar niches. Genes specific to R. syzygii and BDB were almost all of unknown function or extrachromosomal origin. Thus, the pathogenic life-styles of these organisms are more probably due to ecological adaptation and genomic convergence during vertical evolution than to the acquisition of DNA by horizontal transfer.


Assuntos
Genoma Bacteriano/genética , Ralstonia solanacearum/genética , Ralstonia/genética , Ásia , Sequência de Bases , Genes Bacterianos , Dados de Sequência Molecular , Filogenia , Ralstonia/classificação , Ralstonia solanacearum/classificação , Análise de Sequência de DNA , Especificidade da Espécie
13.
Dis Aquat Organ ; 92(1): 1-10, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-21166309

RESUMO

The recent emergence of a herpes-like virus in both farmed and wild populations of abalone in Victoria, Australia, has been associated with high mortality rates in animals of all ages. Based on viral genome sequence information, a virus-specific real-time TaqMan assay was developed for detection and identification of the abalone herpes-like virus (AbHV). The assay was shown to be specific as it did not detect other viruses from either the Herpesvirales or the Iridovirales orders which have genome sequence similarities. However, the TaqMan assay was able to detect DNA from the Taiwanese abalone herpes-like virus, suggesting a relationship between the Taiwanese and Australian viruses. In addition, the assay detected < 300 copies of recombinant plasmid DNA per reaction. Performance characteristics for the AbHV TaqMan assay were established using 1673 samples from different abalone populations in Victoria and Tasmania. The highest diagnostic sensitivity and specificity were 96.7 (95% CI: 82.7 to 99.4) and 99.7 (95% CI: 99.3 to 99.9), respectively, at a threshold cycle (C(T)) value of 35.8. The results from 2 separate laboratories indicated good repeatability and reproducibility. This molecular assay has already proven useful in confirming presumptive diagnosis (based on the presence of ganglioneuritis) of diseased abalone in Victorian waters as well as being a tool for surveillance of wild abalone stocks in other parts of Australia.


Assuntos
Herpesviridae/isolamento & purificação , Moluscos/virologia , Reação em Cadeia da Polimerase/métodos , Animais , Austrália , DNA Viral/genética , DNA Viral/isolamento & purificação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
BMC Genomics ; 11: 379, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20550686

RESUMO

BACKGROUND: The Ralstonia solanacearum species complex includes thousands of strains pathogenic to an unusually wide range of plant species. These globally dispersed and heterogeneous strains cause bacterial wilt diseases, which have major socio-economic impacts. Pathogenicity is an ancestral trait in R. solanacearum and strains with high genetic variation can be subdivided into four phylotypes, correlating to isolates from Asia (phylotype I), the Americas (phylotype IIA and IIB), Africa (phylotype III) and Indonesia (phylotype IV). Comparison of genome sequences strains representative of this phylogenetic diversity can help determine which traits allow this bacterium to be such a pathogen of so many different plant species and how the bacteria survive in many different habitats. RESULTS: The genomes of three tomato bacterial wilt pathogens, CFBP2957 (phy. IIA), CMR15 (phy. III) and PSI07 (phy. IV) were sequenced and manually annotated. These genomes were compared with those of three previously sequenced R. solanacearum strains: GMI1000 (tomato, phy. I), IPO1609 (potato, phy. IIB), and Molk2 (banana, phy. IIB). The major genomic features (size, G+C content, number of genes) were conserved across all of the six sequenced strains. Despite relatively high genetic distances (calculated from average nucleotide identity) and many genomic rearrangements, more than 60% of the genes of the megaplasmid and 70% of those on the chromosome are syntenic. The three new genomic sequences revealed the presence of several previously unknown traits, probably acquired by horizontal transfers, within the genomes of R. solanacearum, including a type IV secretion system, a rhi-type anti-mitotic toxin and two small plasmids. Genes involved in virulence appear to be evolving at a faster rate than the genome as a whole. CONCLUSIONS: Comparative analysis of genome sequences and gene content confirmed the differentiation of R. solanacearum species complex strains into four phylotypes. Genetic distances between strains, in conjunction with CGH analysis of a larger set of strains, revealed differences great enough to consider reclassification of the R. solanacearum species complex into three species. The data are still too fragmentary to link genomic classification and phenotypes, but these new genome sequences identify a pan-genome more representative of the diversity in the R. solanancearum species complex.


Assuntos
Evolução Molecular , Variação Genética , Genoma Bacteriano/genética , Ralstonia solanacearum/genética , Solanum lycopersicum/microbiologia , Hibridização Genômica Comparativa , Sequência Conservada , Genes Bacterianos/genética , Ilhas Genômicas/genética , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Plasmídeos/genética , Ralstonia solanacearum/metabolismo , Fatores de Virulência/genética
15.
Appl Environ Microbiol ; 73(21): 6790-801, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17720825

RESUMO

We investigated a destructive pathogenic variant of the plant pathogen Ralstonia solanacearum that was consistently isolated in Martinique (French West Indies). Since the 1960s, bacterial wilt of solanaceous crops in Martinique has been caused primarily by strains of R. solanacearum that belong to either phylotype I or phylotype II. Since 1999, anthurium shade houses have been dramatically affected by uncharacterized phylotype II strains that also affected a wide range of species, such as Heliconia caribea, cucurbitaceous crops, and weeds. From 1989 to 2003, a total of 224 R. solanacearum isolates were collected and compared to 6 strains isolated in Martinique in the 1980s. The genetic diversity and phylogenetic position of selected strains from Martinique were assessed (multiplex PCRs, mutS and egl DNA sequence analysis) and compared to the genetic diversity and phylogenetic position of 32 reference strains covering the known diversity within the R. solanacearum species complex. Twenty-four representative isolates were tested for pathogenicity to Musa species (banana) and tomato, eggplant, and sweet pepper. Based upon both PCR and sequence analysis, 119 Martinique isolates from anthurium, members of the family Cucurbitaceae, Heliconia, and tomato, were determined to belong to a group termed phylotype II/sequevar 4 (II/4). While these strains cluster with the Moko disease-causing strains, they were not pathogenic to banana (NPB). The strains belonging to phylotype II/4NPB were highly pathogenic to tomato, eggplant, and pepper, were able to wilt the resistant tomato variety Hawaii7996, and may latently infect cooking banana. Phylotype II/4NPB constitutes a new pathogenic variant of R. solanacearum that has recently appeared in Martinique and may be latently prevalent throughout Caribbean and Central/South America.


Assuntos
Variação Genética , Genoma Bacteriano/genética , Ralstonia solanacearum/patogenicidade , Solanaceae/microbiologia , DNA Bacteriano/análise , Genes Bacterianos/genética , Filogenia , Ralstonia solanacearum/classificação , Ralstonia solanacearum/isolamento & purificação , Análise de Sequência de DNA , Fatores de Virulência/genética , Índias Ocidentais
16.
Environ Microbiol ; 9(4): 944-53, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17359266

RESUMO

Pedomicrobium sp. ACM 3067 is a budding-hyphal bacterium belonging to the alpha-Proteobacteria which is able to oxidize soluble Mn2+ to insoluble manganese oxide. A cosmid, from a whole-genome library, containing the putative genes responsible for manganese oxidation was identified and a primer-walking approach yielded 4350 bp of novel sequence. Analysis of this sequence showed the presence of a predicted three-gene operon, moxCBA. The moxA gene product showed homology to multicopper oxidases (MCOs) and contained the characteristic four copper-binding motifs (A, B, C and D) common to MCOs. An insertion mutation of moxA showed that this gene was essential for both manganese oxidation and laccase-like activity. The moxB gene product showed homology to a family of outer membrane proteins which are essential for Type I secretion in Gram-negative bacteria. moxBA has not been observed in other manganese-oxidizing bacteria but homologues were identified in the genomes of several bacteria including Sinorhizobium meliloti 1021 and Agrobacterium tumefaciens C58. These results suggest that moxBA and its homologues constitute a family of genes encoding an MCO and a predicted component of the Type I secretion system.


Assuntos
Alphaproteobacteria/metabolismo , Cobre/metabolismo , Manganês/metabolismo , Óperon/genética , Oxirredutases/metabolismo , Alphaproteobacteria/genética , Cosmídeos/genética , DNA Bacteriano/análise , Lacase/classificação , Lacase/genética , Lacase/metabolismo , Oxirredução , Oxirredutases/genética , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA