Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 73(9): 179, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960949

RESUMO

Adoptive cellular therapy (ACT) using memory-like (ML) natural killer (NK) cells, generated through overnight ex vivo activation with IL-12, IL-15, and IL-18, has shown promise for treating hematologic malignancies. We recently reported that a multifunctional fusion molecule, HCW9201, comprising IL-12, IL-15, and IL-18 domains could replace individual cytokines for priming human ML NK cell programming ("Prime" step). However, this approach does not include ex vivo expansion, thereby limiting the ability to test different doses and schedules. Here, we report the design and generation of a multifunctional fusion molecule, HCW9206, consisting of human IL-7, IL-15, and IL-21 cytokines. We observed > 300-fold expansion for HCW9201-primed human NK cells cultured for 14 days with HCW9206 and HCW9101, an IgG1 antibody, recognizing the scaffold domain of HCW9206 ("Expand" step). This expansion was dependent on both HCW9206 cytokines and interactions of the IgG1 mAb with CD16 receptors on NK cells. The resulting "Prime and Expand" ML NK cells exhibited elevated metabolic capacity, stable epigenetic IFNG promoter demethylation, enhanced antitumor activity in vitro and in vivo, and superior persistence in NSG mice. Thus, the "Prime and Expand" strategy represents a simple feeder cell-free approach to streamline manufacturing of clinical-grade ML NK cells to support multidose and off-the-shelf ACT.


Assuntos
Memória Imunológica , Células Matadoras Naturais , Proteínas Recombinantes de Fusão , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Humanos , Animais , Proteínas Recombinantes de Fusão/genética , Camundongos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Imunoterapia Adotiva/métodos , Interleucina-15/metabolismo
2.
Sci Immunol ; 9(96): eadk4893, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941480

RESUMO

Activation of natural killer (NK) cells with the cytokines interleukin-12 (IL-12), IL-15, and IL-18 induces their differentiation into memory-like (ML) NK cells; however, the underlying epigenetic and transcriptional mechanisms are unclear. By combining ATAC-seq, CITE-seq, and functional analyses, we discovered that IL-12/15/18 activation results in two main human NK fates: reprogramming into enriched memory-like (eML) NK cells or priming into effector conventional NK (effcNK) cells. eML NK cells had distinct transcriptional and epigenetic profiles and enhanced function, whereas effcNK cells resembled cytokine-primed cNK cells. Two transcriptionally discrete subsets of eML NK cells were also identified, eML-1 and eML-2, primarily arising from CD56bright or CD56dim mature NK cell subsets, respectively. Furthermore, these eML subsets were evident weeks after transfer of IL-12/15/18-activated NK cells into patients with cancer. Our findings demonstrate that NK cell activation with IL-12/15/18 results in previously unappreciated diverse cellular fates and identifies new strategies to enhance NK therapies.


Assuntos
Citocinas , Epigênese Genética , Memória Imunológica , Células Matadoras Naturais , Humanos , Células Matadoras Naturais/imunologia , Epigênese Genética/imunologia , Memória Imunológica/imunologia , Citocinas/imunologia , Regulação da Expressão Gênica/imunologia , Diferenciação Celular/imunologia , Interleucina-15/imunologia
3.
Oncoimmunology ; 13(1): 2348254, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737793

RESUMO

Metastatic (m) colorectal cancer (CRC) is an incurable disease with a poor prognosis and thus remains an unmet clinical need. Immune checkpoint blockade (ICB)-based immunotherapy is effective for mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) mCRC patients, but it does not benefit the majority of mCRC patients. NK cells are innate lymphoid cells with potent effector responses against a variety of tumor cells but are frequently dysfunctional in cancer patients. Memory-like (ML) NK cells differentiated after IL-12/IL-15/IL-18 activation overcome many challenges to effective NK cell anti-tumor responses, exhibiting enhanced recognition, function, and in vivo persistence. We hypothesized that ML differentiation enhances the NK cell responses to CRC. Compared to conventional (c) NK cells, ML NK cells displayed increased IFN-γ production against both CRC cell lines and primary patient-derived CRC spheroids. ML NK cells also exhibited improved killing of CRC target cells in vitro in short-term and sustained cytotoxicity assays, as well as in vivo in NSG mice. Mechanistically, enhanced ML NK cell responses were dependent on the activating receptor NKG2D as its blockade significantly decreased ML NK cell functions. Compared to cNK cells, ML NK cells exhibited greater antibody-dependent cytotoxicity when targeted against CRC by cetuximab. ML NK cells from healthy donors and mCRC patients exhibited increased anti-CRC responses. Collectively, our findings demonstrate that ML NK cells exhibit enhanced responses against CRC targets, warranting further investigation in clinical trials for mCRC patients, including those who have failed ICB.


Assuntos
Diferenciação Celular , Neoplasias Colorretais , Memória Imunológica , Células Matadoras Naturais , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Humanos , Animais , Camundongos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Interferon gama/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Camundongos Endogâmicos NOD , Feminino
4.
Blood Adv ; 8(15): 4035-4049, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38713894

RESUMO

ABSTRACT: Personalized cancer vaccines designed to target neoantigens represent a promising new treatment paradigm in oncology. In contrast to classical idiotype vaccines, we hypothesized that "polyvalent" vaccines could be engineered for the personalized treatment of follicular lymphoma (FL) using neoantigen discovery by combined whole-exome sequencing (WES) and RNA sequencing (RNA-seq). Fifty-eight tumor samples from 57 patients with FL underwent WES and RNA-seq. Somatic and B-cell clonotype neoantigens were predicted and filtered to identify high-quality neoantigens. B-cell clonality was determined by the alignment of B-cell receptor (BCR) CDR3 regions from RNA-seq data, grouping at the protein level, and comparison with the BCR repertoire from healthy individuals using RNA-seq data. An average of 52 somatic mutations per patient (range, 2-172) were identified, and ≥2 (median, 15) high-quality neoantigens were predicted for 56 of 58 FL samples. The predicted neoantigen peptides were composed of missense mutations (77%), indels (9%), gene fusions (3%), and BCR sequences (11%). Building off of these preclinical analyses, we initiated a pilot clinical trial using personalized neoantigen vaccination combined with PD-1 blockade in patients with relapsed or refractory FL (#NCT03121677). Synthetic long peptide vaccines targeting predicted high-quality neoantigens were successfully synthesized for and administered to all 4 patients enrolled. Initial results demonstrate feasibility, safety, and potential immunologic and clinical responses. Our study suggests that a genomics-driven personalized cancer vaccine strategy is feasible for patients with FL, and this may overcome prior challenges in the field. This trial was registered at www.ClinicalTrials.gov as #NCT03121677.


Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Linfoma Folicular , Medicina de Precisão , Humanos , Linfoma Folicular/terapia , Linfoma Folicular/imunologia , Linfoma Folicular/genética , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Antígenos de Neoplasias/imunologia , Medicina de Precisão/métodos , Pessoa de Meia-Idade , Feminino , Masculino , Idoso , Adulto , Sequenciamento do Exoma , Mutação
5.
J Clin Invest ; 134(15)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805302

RESUMO

The surface receptor CD8α is present on 20%-80% of human (but not mouse) NK cells, yet its function on NK cells remains poorly understood. CD8α expression on donor NK cells was associated with a lack of therapeutic responses in patients with leukemia in prior studies, thus, we hypothesized that CD8α may affect critical NK cell functions. Here, we discovered that CD8α- NK cells had improved control of leukemia in xenograft models compared with CD8α+ NK cells, likely due to an enhanced capacity for proliferation. Unexpectedly, we found that CD8α expression was induced on approximately 30% of previously CD8α- NK cells following IL-15 stimulation. These induced CD8α+ (iCD8α+) NK cells had the greatest proliferation, responses to IL-15 signaling, and metabolic activity compared with those that sustained existing CD8α expression (sustained CD8α+) or those that remained CD8α- (persistent CD8α-). These iCD8α+ cells originated from an IL-15Rßhi NK cell population, with CD8α expression dependent on the transcription factor RUNX3. Moreover, CD8A CRISPR/Cas9 deletion resulted in enhanced responses through the activating receptor NKp30, possibly by modulating KIR inhibitory function. Thus, CD8α status identified human NK cell capacity for IL-15-induced proliferation and metabolism in a time-dependent fashion, and its presence had a suppressive effect on NK cell-activating receptors.


Assuntos
Antígenos CD8 , Proliferação de Células , Interleucina-15 , Células Matadoras Naturais , Ativação Linfocitária , Humanos , Antígenos CD8/metabolismo , Antígenos CD8/imunologia , Antígenos CD8/genética , Interleucina-15/imunologia , Interleucina-15/metabolismo , Interleucina-15/genética , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo
6.
Commun Biol ; 7(1): 484, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649520

RESUMO

Spontaneous cancers in companion dogs are robust models of human disease. Tracking tumor-specific immune responses in these models requires reagents to perform species-specific single cell T cell receptor sequencing (scTCRseq). scTCRseq and integration with scRNA data have not been demonstrated on companion dogs with cancer. Here, five healthy dogs, two dogs with T cell lymphoma and four dogs with melanoma are selected to demonstrate applicability of scTCRseq in a cancer immunotherapy setting. Single-cell suspensions of PBMCs or lymph node aspirates are profiled using scRNA and dog-specific scTCRseq primers. In total, 77,809 V(D)J-expressing cells are detected, with an average of 3498 (348 - 5,971) unique clonotypes identified per sample. In total, 29/34, 40/40, 22/22 and 9/9 known functional TRAV, TRAJ, TRBV and TRBJ gene segments are observed respectively. Pseudogene or otherwise defective gene segments are also detected supporting re-annotation of several as functional. Healthy dogs exhibit highly diverse repertoires, T cell lymphomas exhibit clonal repertoires, and vaccine-treated melanoma dogs are dominated by a small number of highly abundant clonotypes. scRNA libraries define large clusters of V(D)J-expressing CD8+ and CD4 + T cells. Dominant clonotypes observed in melanoma PBMCs are predominantly CD8 + T cells, with activated phenotypes, suggesting possible anti-tumor T cell populations.


Assuntos
Receptores de Antígenos de Linfócitos T , Análise de Célula Única , Animais , Cães , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Melanoma/genética , Melanoma/imunologia , Melanoma/veterinária , Doenças do Cão/imunologia , Doenças do Cão/genética , Linfoma de Células T/imunologia , Linfoma de Células T/veterinária , Linfoma de Células T/genética
9.
Cancer Immunol Res ; 12(5): 559-574, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38407894

RESUMO

Sipuleucel-T (sip-T) is the only FDA-approved autologous cellular immunotherapy for metastatic castration-resistant prostate cancer (mCRPC). To elucidate parameters of the response profile to this therapy, we report high-dimensional analyses of sip-T using cytometry by time of flight (CyTOF) and show a lymphoid predominance, with CD3+ T cells constituting the highest proportion (median ∼60%) of sip-T, followed by B cells, and natural killer (NK) and NKT cells. We hypothesized that treatment of sip-T with homeostatic cytokines known to activate/expand effector lymphocytes could augment efficacy against prostate tumors. Of the cytokines tested, IL15 was the most effective at enhancing activation and proliferation of effector lymphocytes, as well as augmenting tumor cytotoxicity in vitro. Co-culture of sip-T with IL15 and control or prostate-relevant antigens showed substantial activation and expansion of CD8+ T cells and NKT cells in an antigen-specific manner. Adoptive transfer of IL15-treated sip-T into NSG mice resulted in more potent prostate tumor growth inhibition compared with control sip-T. Evaluation of tumor-infiltrating lymphocytes revealed a 2- to 14-fold higher influx of sip-T and a significant increase in IFNγ producing CD8+ T cells and NKT cells within the tumor microenvironment in the IL15 group. In conclusion, we put forward evidence that IL15 treatment can enhance the functional antitumor immunity of sip-T, providing rationale for combining IL15 or IL15 agonists with sip-T to treat patients with mCRPC.


Assuntos
Interleucina-15 , Ativação Linfocitária , Extratos de Tecidos , Interleucina-15/farmacologia , Animais , Masculino , Extratos de Tecidos/farmacologia , Humanos , Camundongos , Ativação Linfocitária/imunologia , Linhagem Celular Tumoral , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Neoplasias de Próstata Resistentes à Castração/imunologia , Neoplasias de Próstata Resistentes à Castração/terapia , Neoplasias de Próstata Resistentes à Castração/patologia , Imunoterapia Adotiva/métodos
10.
Stem Cell Reports ; 19(2): 299-313, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38215755

RESUMO

Successful allogeneic human pluripotent stem cell (hPSC)-derived therapies must overcome immunological rejection by the recipient. To build reagents to define these barriers, we genetically ablated ß2M, TAP1, CIITA, CD74, MICA, and MICB to limit expression of HLA-I, HLA-II, and natural killer (NK) cell activating ligands in hPSCs. Transplantation of these cells that also expressed covalent single chain trimers of Qa1 and H2-Kb to inhibit NK cells and CD55, Crry, and CD59 to inhibit complement deposition led to persistent teratomas in wild-type mice. Transplantation of HLA-deficient hPSCs into mice genetically deficient in complement and depleted of NK cells also led to persistent teratomas. Thus, T cell, NK cell, and complement evasion are necessary to prevent immunological rejection of hPSCs and their progeny. These cells and versions expressing human orthologs of immune evasion factors can be used to define cell type-specific immune barriers and conduct preclinical testing in immunocompetent mouse models.


Assuntos
Células-Tronco Pluripotentes , Teratoma , Humanos , Animais , Camundongos , Células Matadoras Naturais , Linhagem Celular , Linfócitos T , Proteínas do Sistema Complemento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA