Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 161(4)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39082372

RESUMO

The successful design and device integration of nanoscale heterointerfaces hinges upon precise manipulation of both ground- and excited-state charge carrier (electron and hole) densities. However, it is particularly challenging to quantify these charge carrier densities in nanoscale materials, leading to uncertainties in the mechanisms of many carrier density-dependent properties and processes. Here, we demonstrate a method that utilizes steady-state and transient absorption spectroscopies to correlate monolayer MoS2 electron density with the easily measured metric of excitonic optical absorption quenching in a variety of mixed-dimensionality s-SWCNT/MoS2 heterostructures. By employing a 2D phase-space filling model, the resulting correlation elucidates the relationship between charge density, local dielectric environment, and concomitant excitonic properties. The phase-space filling model is also able to describe existing trends from the literature on transistor-based measurements on MoS2, WS2, and MoSe2 monolayers that were not previously compared to a physical model, providing additional support for our method and results. The findings provide a pathway to the community for estimating both ground- and excited-state carrier densities in a wide range of TMDC-based systems.

2.
J Phys Chem Lett ; 15(6): 1748-1754, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38324713

RESUMO

In this paper, we demonstrate that exciton/exciton annihilation in the 2D perovskite (PEA)2PbI4 (PEPI)─a major loss mechanism in solar cells and light-emitting diodes, can be controlled through coupling of excitons with cavity polaritons. We study the excited state dynamics using time-resolved transient absorption spectroscopy and show that the system can be tuned through a strong coupling regime by varying the cavity width through the PEPI layer thickness. Remarkably, strong coupling occurs even when the cavity quality factor remains poor, providing easy optical access. We demonstrate that the observed derivative-like transient absorption spectra can be modeled using a time-dependent Rabi splitting that occurs because of transient bleaching of the excitonic states. When PEPI is strongly coupled to the cavity, the exciton/exciton annihilation rate is suppressed by 1 order of magnitude. A model that relies on the partly photonic character of polaritons explains the results as a function of detuning.

3.
Artigo em Inglês | MEDLINE | ID: mdl-27048721

RESUMO

Incommensurately modulated borate structures of a new type were studied in detail in the nonlinear optical (NLO) materials Cs(2)TB4O9 (T = Ge, Si) using single-crystal X-ray diffraction techniques. The structures were solved by the charge-flipping algorithm in the superspace group I2(αß0)0. The refinement results strongly suggest that the main structure modulation feature of Cs(2)TB4O9 is the ordering of the O atoms. With these modulated structure models, the unreasonable B-O distances in the average structures were explained as the ordering of BO4 and BO3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA