Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Small ; : e2406929, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39180443

RESUMO

Chemical bath deposition (CBD) is an effective technique used to produce high-quality SnO2 electron transport layers (ETLs) employed in perovskite solar cells (PSCs). By optimizing the CBD process, high-quality SnO2 films are obtained with minimal oxygen vacancies and close energy level alignment with the perovskite layer. In addition, the 3D perovskite layers are passivated with n-butylammonium iodide (BAI), iso-pentylammonium iodide (PNAI), or 2-methoxyethylammonium iodide (MOAI) to form 3D/2D heterojunctions, resulting in defect passivation, suppressing ion migration and improving charge carrier extraction. As a result of these heterojunctions, the power conversion efficiency (PCE) of the PSCs increased from 21.39% for the reference device to 23.70% for the device containing the MOAI-passivated film. The 2D perovskite layer also provides a hydrophobic barrier, thus enhancing stability to humidity. Notably, the PNAI-based device exhibited remarkable stability, retaining approximately 95% of its initial efficiency after undergoing 1000-h testing in an N2 environment at room temperature.

2.
Angew Chem Int Ed Engl ; 63(32): e202407193, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38744679

RESUMO

As a leading contender to replace lead halide perovskites, tin-based perovskites have demonstrated ever increasing performance in solar cells and light-emitting diodes (LEDs). They tend to be processed with dimethyl sulfoxide (DMSO) solvent, which has been identified as a major contributor to the Sn(II) oxidation during film fabrication, posing a challenge to the further improvement of Sn-based perovskites. Herein, we use NMR spectroscopy to investigate the kinetics of the oxidation of SnI2, revealing that autoamplification takes place, accelerating the oxidation as the reaction progresses. We propose a mechanism consistent with these observations involving water participation and HI generation. Building upon these insights, we have developed low-temperature Sn-based perovskite LEDs (PeLEDs) processed at 60 °C, achieving enhanced external quantum efficiencies (EQEs). Our research underscores the substantial potential of low-temperature DMSO solvent processes and DMSO-free solvent systems for fabricating oxidation-free Sn-based perovskites, shaping the future direction in processing Sn-containing perovskite materials and optoelectronic devices.

3.
Adv Mater ; 36(28): e2310619, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38718249

RESUMO

The orthogonal structure of the widely used hole transporting material (HTM) 2,2',7,7'-tetrakis(N, N-di-p-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-OMeTAD) imparts isotropic conductivity and excellent film-forming capability. However, inherently weak intra- and inter-molecular π-π interactions result in low intrinsic hole mobility. Herein, a novel HTM, termed FTPE-ST, with a twist conjugated dibenzo(g,p)chrysene core and coplanar 3,4-ethylenedioxythiophene (EDOT) as extended donor units, is designed to enhance π-π interactions, without compromising on solubility. The three-dimensional (3D) configuration provides the material multi-direction charge transport as well as excellent solubility even in 2-methylanisole, and its large conjugated backbone endows the HTM with a high hole mobility. Moreover, the sulfur donors in EDOT units coordinate with lead ions on the perovskite surface, leading to stronger interfacial interactions and the suppression of defects at the perovskite/HTM interface. As a result, perovskite solar cells (PSCs) employing FTPE-ST achieve a champion power conversion efficiency (PCE) of 25.21% with excellent long-time stability, one of the highest PCEs for non-spiro HTMs in n-i-p PSCs. In addition, the excellent film-forming capacity of the HTM enables the fabrication of FTPE-ST-based large-scale PSCs (1.0 cm2) and modules (29.0 cm2), which achieve PCEs of 24.21% (certificated 24.17%) and 21.27%, respectively.

4.
Angew Chem Int Ed Engl ; 63(18): e202320152, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38437457

RESUMO

Dopant-free hole transporting materials (HTMs) is significant to the stability of perovskite solar cells (PSCs). Here, we developed a novel star-shape arylamine HTM, termed Py-DB, with a pyrene core and carbon-carbon double bonds as the bridge units. Compared to the reference HTM (termed Py-C), the extension of the planar conjugation backbone endows Py-DB with typical intermolecular π-π stacking interactions and excellent solubility, resulting in improved hole mobility and film morphology. In addition, the lower HOMO energy level of the Py-DB HTM provides efficient hole extraction with reduced energy loss at the perovskite/HTM interface. Consequently, an impressive power conversion efficiency (PCE) of 24.33 % was achieved for dopant-free Py-DB-based PSCs, which is the highest PCE for dopant-free small molecular HTMs in n-i-p configured PSCs. The dopant-free Py-DB-based device also exhibits improved long-term stability, retaining over 90 % of its initial efficiency after 1000 h exposure to 25 % humidity at 60 °C. These findings provide valuable insights and approaches for the further development of dopant-free HTMs for efficient and reliable PSCs.

5.
Nature ; 628(8007): 299-305, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438066

RESUMO

Perovskite solar cells (PSCs) are among the most promising photovoltaic technologies owing to their exceptional optoelectronic properties1,2. However, the lower efficiency, poor stability and reproducibility issues of large-area PSCs compared with laboratory-scale PSCs are notable drawbacks that hinder their commercialization3. Here we report a synergistic dopant-additive combination strategy using methylammonium chloride (MACl) as the dopant and a Lewis-basic ionic-liquid additive, 1,3-bis(cyanomethyl)imidazolium chloride ([Bcmim]Cl). This strategy effectively inhibits the degradation of the perovskite precursor solution (PPS), suppresses the aggregation of MACl and results in phase-homogeneous and stable perovskite films with high crystallinity and fewer defects. This approach enabled the fabrication of perovskite solar modules (PSMs) that achieved a certified efficiency of 23.30% and ultimately stabilized at 22.97% over a 27.22-cm2 aperture area, marking the highest certified PSM performance. Furthermore, the PSMs showed long-term operational stability, maintaining 94.66% of the initial efficiency after 1,000 h under continuous one-sun illumination at room temperature. The interaction between [Bcmim]Cl and MACl was extensively studied to unravel the mechanism leading to an enhancement of device properties. Our approach holds substantial promise for bridging the benchtop-to-rooftop gap and advancing the production and commercialization of large-area perovskite photovoltaics.

6.
Small ; 20(21): e2309830, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38174610

RESUMO

Iron/iron phosphide nanospheres supported on ginkgo leaf-derived carbon (Fe&FeP@gl-C) are prepared using a post-phosphidation approach, with varying amounts of iron (Fe). The activity of the catalysts in the hydrogen evolution reaction (HER) outperforms iron/iron carbide nanospheres supported on ginkgo leaf-derived carbon (Fe&FexC@gl-C), due to enhanced work function, electron transfer, and Volmer processes. The d-band centers of Fe&FeP@gl-C-15 move away from the Fermi level, lowering the H2 desorption energy and accelerating the Heyrovsky reaction. Density functional theory (DFT) calculations reveal that the hydrogen-binding free energy |ΔGH*| value is close to zero for the Fe&FeP@gl-C-15 catalyst, showing a good balance between Volmer and Heyrovsky processes. The Fe&FeP@gl-C-15 catalyst shows excellent hydrogen evolution performance in 0.5 m H2SO4, driving a current density of 10 mA cm-2 at an overpotential of 92 mV. Notably, the Fe&FeP@gl-C-15 catalyst outperforms a 20 wt% Pt/C catalyst, with a smaller overpotential required to drive a higher current density above 375 mA cm-2.

7.
Small ; 19(41): e2206999, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37317016

RESUMO

Solid-state proton conductors based on the use of metal-organic framework (MOF) materials as proton exchange membranes are being investigated as alternatives to the current state of the art. This study reports a new family of proton conductors based on MIL-101 and protic ionic liquid polymers (PILPs) containing different anions. By first installing protic ionic liquid (PIL) monomers inside the hierarchical pores of a highly stable MOF, MIL-101, then carrying out polymerization in situ, a series of PILP@MIL-101 composites was synthesized. The resulting PILP@MIL-101 composites not only maintain the nanoporous cavities and water stability of MIL-101, but the intertwined PILPs provide a number of opportunities for much-improved proton transport compared to MIL-101. The PILP@MIL-101 composite with HSO4 - anions shows superprotonic conductivity (6.3 × 10-2  S cm-1 ) at 85 °C and 98% relative humidity. The mechanism of proton conduction is proposed. In addition, the structures of the PIL monomers were determined by single crystal X-ray analysis, which reveals many strong hydrogen bonding interactions with O/NH···O distances below 2.6 Å.

8.
Sci Adv ; 9(21): eadg0087, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37235654

RESUMO

All-inorganic CsPbI3 perovskite solar cells (PSCs) with efficiencies exceeding 20% are ideal candidates for application in large-scale tandem solar cells. However, there are still two major obstacles hindering their scale-up: (i) the inhomogeneous solid-state synthesis process and (ii) the inferior stability of the photoactive CsPbI3 black phase. Here, we have used a thermally stable ionic liquid, bis(triphenylphosphine)iminium bis(trifluoromethylsulfonyl)imide ([PPN][TFSI]), to retard the high-temperature solid-state reaction between Cs4PbI6 and DMAPbI3 [dimethylammonium (DMA)], which enables the preparation of high-quality and large-area CsPbI3 films in the air. Because of the strong Pb-O contacts, [PPN][TFSI] increases the formation energy of superficial vacancies and prevents the undesired phase degradation of CsPbI3. The resulting PSCs attained a power conversion efficiency (PCE) of 20.64% (certified 19.69%) with long-term operational stability over 1000 hours. A record efficiency of 16.89% for an all-inorganic perovskite solar module was achieved, with an active area of 28.17 cm2.

9.
J Hazard Mater ; 443(Pt B): 130270, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36332280

RESUMO

Porous monolithic microreactors show great promise in catalytic applications, but are usually based on non-renewable materials. Herein, we demonstrate a Ni/Au nanoparticle-decorated carbonized wood (Ni/Au-CW) monolithic membrane microreactor for the efficient reduction of 4-nitrophenol. The hierarchical porous wood structure supports uniformly distributed heterobimetallic Ni/Au nanoparticles. As a consequence of these two factors, both mass diffusion and electron transfer are enhanced, resulting in a superior reduction efficiency of 99.5% as the liquor flows through the optimised Ni/Au-CW membrane. The reaction mechanism was investigated by electron paramagnetic resonance spectroscopy and density functional theory calculations. The proposed attraction-repulsion mechanism facilitated by the bimetallic nanoparticles has been ascribed to the different electronegativities of Ni and Au. The Ni/Au-CW membrane exhibits excellent catalytic performance and could be applicable to other catalytic transformations.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Madeira , Nitrofenóis/química
10.
Inorg Chem ; 61(12): 5010-5016, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35290056

RESUMO

Passivation of perovskite films by ionic liquids (ILs) improves the performance (efficiency and stability) of perovskite solar cells (PSCs). However, the role of ILs in the passivation of perovskite films is not fully understood. Here, we report the reactions of commonly used ILs with the components of perovskites. The reaction of ILs with perovskite precursors (PbI2 and methylammonium iodide or formamidinium iodide) in a 1:1:1 molar ratio affords one-dimensional (1D) salts composed of the IL cation interspersed along infinite 1D polymeric [PbI3]-n chains. If the IL is applied in excess, the resulting crystal is composed of six cations surrounding a discrete [Pb3I12]6- cluster. All the isolated salts were unambiguously characterized by single-crystal X-ray diffraction analysis, which also reveals extensive hydrogen-bonding interactions.

11.
JACS Au ; 1(6): 729-733, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34467329

RESUMO

Rhodium nanoparticles embedded on the interior of hollow porous carbon nanospheres, able to sieve monomers from polymers, were used to confirm the precise role of metal catalysts in the reductive catalytic fractionation of lignin. The study provides clear evidence that the primary function of the metal catalyst is to hydrogenate monomeric lignin fragments into more stable forms following a solvent-based fractionation and fragmentation of lignin.

12.
Nanoscale Adv ; 3(13): 3708-3729, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36133016

RESUMO

Bacterial infections and transmission threaten human health and well-being. Graphite carbon nitride (g-C3N4), a promising photocatalytic antibacterial nanomaterial, has attracted increasing attention to combat bacterial transmission, due to the outstanding stability, high efficiency and environmental sustainability of this material. However, the antibacterial efficiency of g-C3N4 is affected by several factors, including its specific surface area, rapid electron/hole recombination processes and optical absorption properties. To improve the efficiency of the antibacterial properties of g-C3N4 and extend its range of applications, various nanocomposites have been prepared and evaluated. In this review, the advances in amplifying the photocatalytic antibacterial efficiency of g-C3N4-based nanocomposites is discussed, including different topologies, noble metal decoration, non-noble metal doping and heterojunction construction. The enhancement mechanisms and synergistic effects in g-C3N4-based nanocomposites are highlighted. The remaining challenges and future perspectives of antibacterial g-C3N4-based nanocomposites are also discussed.

13.
Sci Adv ; 6(27)2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32937440

RESUMO

Catalytic dehydrogenation and hydrogenation of amines and alcohols are important in the synthesis of fine chemicals. Despite several efficient homogeneous catalysts having been identified, highly active heterogeneous catalysts remain elusive, although they would meet an unmet need. Here, we show that bimetallic Pd-Au nanoparticles with Pd-to-Au molar ratios of 3:1 immobilized on multiwall carbon nanotubes (Pd3Au1/CNT) display high catalytic activity in the oxidant-free and acceptorless dehydrogenation and hydrogenation of N- and O-containing heterocyclic compounds, amines/imines, and alcohols/ketones. Transmission electron microscopy analysis demonstrates the preferential exposure of Pd3Au1(111) facets on the Pd3Au1/CNT catalyst. Mechanistic insights combining experimental data with density functional theory calculations reveal that the Pd3Au1(111) surface enhances both dehydrogenation and hydrogenation reactions and provides a rationale for the observed enhancements.

14.
Adv Mater ; 32(40): e2003801, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32856374

RESUMO

Despite the excellent photovoltaic properties achieved by perovskite solar cells at the laboratory scale, hybrid perovskites decompose in the presence of air, especially at high temperatures and in humid environments. Consequently, high-efficiency perovskites are usually prepared in dry/inert environments, which are expensive and less convenient for scale-up purposes. Here, a new approach based on the inclusion of an in situ polymerizable ionic liquid, 1,3-bis(4-vinylbenzyl)imidazolium chloride ([bvbim]Cl), is presented, which allows perovskite films to be manufactured under humid environments, additionally leading to a material with improved quality and long-term stability. The approach, which is transferrable to several perovskite formulations, allows efficiencies as high as 17% for MAPbI3 processed in air % relative humidity (RH) ≥30 (from an initial 15%), and 19.92% for FAMAPbI3 fabricated in %RH ≥50 (from an initial 17%), providing one of the best performances to date under similar conditions.

15.
ChemSusChem ; 13(18): 5112-5118, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32672900

RESUMO

Water electrolysis is an advanced and sustainable energy conversion technology used to generate H2 . However, the low efficiency of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) hampers the overall water-splitting catalytic performance. Here, a hybrid catalyst was constructed from N-doped CoS2 nanoparticles on N,S-co-doped graphene nanosheets (N-CoS2 /G) using a facile method, and the catalyst exhibited excellent bifunctional activity. Introduction of N atoms not only promoted the adsorption of reaction intermediates, but also bridged the CoS2 nanoparticles and graphene to improve electron transfer. Moreover, using thiourea as both N- and S-source ensured synthesis of much smaller-sized nanoparticles with more surface active sites. Surprisingly, the N-CoS2 /G exhibited superior catalytic activity with a low overpotential of 260 mV for the OER and 109 mV for the HER at a current density of 10 mA cm-2 . The assembled N-CoS2 /G : N-CoS2 /G electrolyzer substantially expedited overall water splitting with a voltage requirement of 1.58 V to reach 10 mA cm-2 , which is superior to most reported Co-based bifunctional catalysts and other non-precious-metal catalysts. This work provides a new strategy towards advanced bifunctional catalysts for water electrolysis.

16.
Angew Chem Int Ed Engl ; 59(38): 16371-16375, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32515536

RESUMO

Methanation of carbon dioxide (CO2 ) is attractive within the context of a renewable energy refinery. Herein, we report an indirect methanation method that harnesses amino alcohols as relay molecules in combination with a catalyst comprising ruthenium nanoparticles (NPs) immobilized on a Lewis acidic and robust metal-organic framework (MOF). The Ru NPs are well dispersed on the surface of the MOF crystals and have a narrow size distribution. The catalyst efficiently transforms amino alcohols to oxazolidinones (upon reaction with CO2 ) and then to methane (upon reaction with hydrogen), simultaneously regenerating the amino alcohol relay molecule. This protocol provides a sustainable, indirect way for CO2 methanation as the process can be repeated multiple times.

17.
Angew Chem Int Ed Engl ; 59(19): 7501-7507, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32049401

RESUMO

Core-shell nanocatalysts are attractive due to their versatility and stability. Here, we describe cobalt nanoparticles encapsulated within graphitic shells prepared via the pyrolysis of a cationic poly-ionic liquid (PIL) with a cobalt(II) chloride anion. The resulting material has a core-shell structure that displays excellent activity and selectivity in the self-dehydrogenation and hetero-dehydrogenation of primary amines to their corresponding imines. Furthermore, the catalyst exhibits excellent activity in the synthesis of secondary imines from substrates with various reducible functional groups (C=C, C≡C and C≡N) and amino acid derivatives.

18.
ACS Appl Mater Interfaces ; 11(34): 31311-31316, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31369232

RESUMO

Natural polymers such as those present in foods contain abundant noncovalent intra- and intermolecular interactions, notably hydrogen bonds, which make them rigid when dry, but on exposure to water soften, due to disruption of these interactions. This softening process allows them to be reshaped. Food-derived materials, however, have limited practical use due to their high brittleness and gradual degradation. Nevertheless, inspired by such properties, surfactant-polyelectrolyte-based polymers that contain abundant ionic interactions and can be repeatedly reshaped using water as plasticizer are described. The polymers, on the basis of main chain anionic poly(styrene sulfonates) combined with phosphonium surfactant, are readily synthesized with well-defined lamellar domains through interfacial metathesis reactions. The polymers present typical stress-strain characteristics of plastics, and their modulus undergoes a decrease of ca. 3 orders of magnitude upon shear and stretch forces after plasticizing with water. Since recycling of plastics generally involves complicated and energy-intensive processes (that leads to the majority of plastics being land-filled or incinerated), it is envisaged that reshapable polymers, such as those described here, could reduce the amount of plastic waste as they can be remolded as and when required, thus reducing pollution and the depletion of resources, ultimately contributing to a more sustainable society.

19.
Angew Chem Int Ed Engl ; 58(33): 11266-11272, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31165529

RESUMO

The synthesis of three enamine hole-transporting materials (HTMs) based on Tröger's base scaffold are reported. These compounds are obtained in a three-step facile synthesis from commercially available materials without the need of expensive catalysts, inert conditions or time-consuming purification steps. The best performing material, HTM3, demonstrated 18.62 % PCE in PSCs, rivaling spiro-OMeTAD in efficiency, and showing markedly superior long-term stability in non-encapsulated devices. In dopant-free PSCs, HTM3 outperformed spiro-OMeTAD by a factror of 1.6. The high glass-transition temperature (Tg =176 °C) of HTM3 also suggests promising perspectives in device applications.

20.
ChemSusChem ; 12(14): 3271-3277, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31038822

RESUMO

Catalytic lignosulfonate valorization is hampered by the in situ liberation of sulfur that ultimately poisons the catalyst. To overcome this limitation, metal sulfide catalysts were developed that are able to cleave the C-O bonds of lignosulfonate and are resistant to sulfur poisoning. The catalysts were prepared by using the lignosulfonate substrate as a precursor to form well-dispersed carbon-supported metal (Co, Ni, Mo, CoMo, NiMo) sulfide catalysts. Following optimization of the reaction conditions employing a model substrate, the catalysts were used to generate guaiacyl monomers from lignosulfonate. The Co catalyst was able to produce 23.7 mg of 4-propylguaiacol per gram of lignosulfonate with a selectivity of 84 %. The catalysts operated in water and could be recycled and reused multiple times. Thus, it was demonstrated that an inexpensive, sulfur-tolerant catalyst based on an earth-abundant metal and lignosulfonate efficiently catalyzed the selective hydrogenolysis of lignosulfonate in water in the absence of additives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA