Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
JAMA Netw Open ; 7(3): e242684, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38517441

RESUMO

Importance: Surgery with complete tumor resection remains the main treatment option for patients with breast cancer. Yet, current technologies are limited in providing accurate assessment of breast tissue in vivo, warranting development of new technologies for surgical guidance. Objective: To evaluate the performance of the MasSpec Pen for accurate intraoperative assessment of breast tissues and surgical margins based on metabolic and lipid information. Design, Setting, and Participants: In this diagnostic study conducted between February 23, 2017, and August 19, 2021, the mass spectrometry-based device was used to analyze healthy breast and invasive ductal carcinoma (IDC) banked tissue samples from adult patients undergoing breast surgery for ductal carcinomas or nonmalignant conditions. Fresh-frozen tissue samples and touch imprints were analyzed in a laboratory. Intraoperative in vivo and ex vivo breast tissue analyses were performed by surgical staff in operating rooms (ORs) within 2 different hospitals at the Texas Medical Center. Molecular data were used to build statistical classifiers. Main Outcomes and Measures: Prediction results of tissue analyses from classification models were compared with gross assessment, frozen section analysis, and/or final postoperative pathology to assess accuracy. Results: All data acquired from the 143 banked tissue samples, including 79 healthy breast and 64 IDC tissues, were included in the statistical analysis. Data presented rich molecular profiles of healthy and IDC banked tissue samples, with significant changes in relative abundances observed for several metabolic species. Statistical classifiers yielded accuracies of 95.6%, 95.5%, and 90.6% for training, validation, and independent test sets, respectively. A total of 25 participants enrolled in the clinical, intraoperative study; all were female, and the median age was 58 years (IQR, 44-66 years). Intraoperative testing of the technology was successfully performed by surgical staff during 25 breast operations. Of 273 intraoperative analyses performed during 25 surgical cases, 147 analyses from 22 cases were subjected to statistical classification. Testing of the classifiers on 147 intraoperative mass spectra yielded 95.9% agreement with postoperative pathology results. Conclusions and Relevance: The findings of this diagnostic study suggest that the mass spectrometry-based system could be clinically valuable to surgeons and patients by enabling fast molecular-based intraoperative assessment of in vivo and ex vivo breast tissue samples and surgical margins.


Assuntos
Neoplasias da Mama , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Masculino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/cirurgia , Neoplasias da Mama/patologia , Margens de Excisão , Mama/cirurgia , Mama/patologia , Mastectomia , Espectrometria de Massas
2.
JAMA Surg ; 158(10): 1050-1059, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37531134

RESUMO

Importance: Intraoperative identification of tissues through gross inspection during thyroid and parathyroid surgery is challenging yet essential for preserving healthy tissue and improving outcomes for patients. Objective: To evaluate the performance and clinical applicability of the MasSpec Pen (MSPen) technology for discriminating thyroid, parathyroid, and lymph node tissues intraoperatively. Design, Setting, and Participants: In this diagnostic/prognostic study, the MSPen was used to analyze 184 fresh-frozen thyroid, parathyroid, and lymph node tissues in the laboratory and translated to the operating room to enable in vivo and ex vivo tissue analysis by endocrine surgeons in 102 patients undergoing thyroidectomy and parathyroidectomy procedures. This diagnostic study was conducted between August 2017 and March 2020. Fresh-frozen tissues were analyzed in a laboratory. Clinical analyses occurred in an operating room at an academic medical center. Of the analyses performed on 184 fresh-frozen tissues, 131 were included based on sufficient signal and postanalysis pathologic diagnosis. From clinical tests, 102 patients undergoing surgery were included. A total of 1015 intraoperative analyses were performed, with 269 analyses subject to statistical classification. Statistical classifiers for discriminating thyroid, parathyroid, and lymph node tissues were generated using training sets comprising both laboratory and intraoperative data and evaluated on an independent test set of intraoperative data. Data were analyzed from July to December 2022. Main Outcomes and Measures: Accuracy for each tissue type was measured for classification models discriminating thyroid, parathyroid, and lymph node tissues using MSPen data compared to gross analysis and final pathology results. Results: Of the 102 patients in the intraoperative study, 80 were female (78%) and the median (IQR) age was 52 (42-66) years. For discriminating thyroid and parathyroid tissues, an overall accuracy, defined as agreement with pathology, of 92.4% (95% CI, 87.7-95.4) was achieved using MSPen data, with 82.6% (95% CI, 76.5-87.4) accuracy achieved for the independent test set. For distinguishing thyroid from lymph node and parathyroid from lymph node, overall training set accuracies of 97.5% (95% CI, 92.8-99.1) and 96.1% (95% CI, 91.2-98.3), respectively, were achieved. Conclusions and Relevance: In this study, the MSPen showed high performance for discriminating thyroid, parathyroid, and lymph node tissues intraoperatively, suggesting this technology may be useful for providing near real-time feedback on tissue type to aid in surgical decision-making.


Assuntos
Glândulas Paratireoides , Glândula Tireoide , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Masculino , Glândulas Paratireoides/cirurgia , Glândula Tireoide/cirurgia , Paratireoidectomia , Tireoidectomia/métodos , Prognóstico
3.
J Am Chem Soc ; 143(36): 14622-14634, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34486374

RESUMO

Structural characterization of glycerophospholipids beyond the fatty acid level has become a major endeavor in lipidomics, presenting an opportunity to advance the understanding of the intricate relationship between lipid metabolism and disease state. Distinguishing subtle lipid structural features, however, remains a major challenge for high-throughput workflows that implement traditional tandem mass spectrometry (MS/MS) techniques, stunting the molecular depth of quantitative strategies. Here, reversed phase liquid chromatography is coupled to parallel reaction mass spectrometry utilizing the double bond localization capabilities of ultraviolet photodissociation (UVPD) mass spectrometry to produce double bond isomer specific responses that are leveraged for relative quantitation. The strategy provides lipidomic characterization at the double bond level for phosphatidylcholine phospholipids from biological extracts. In addition to quantifying monounsaturated lipids, quantitation of phospholipids incorporating isomeric polyunsaturated fatty acids is also achieved. Using this technique, phosphatidylcholine isomer ratios are compared across human normal and tumor breast tissue to reveal significant structural alterations related to disease state.


Assuntos
Fosfatidilcolinas/análise , Animais , Mama/química , Neoplasias da Mama/química , Bovinos , Cromatografia de Fase Reversa , Ovos , Ácidos Graxos Insaturados/química , Humanos , Isomerismo , Lipidômica/métodos , Fígado/química , Espectrometria de Massas/métodos , Fosfatidilcolinas/química , Raios Ultravioleta
4.
Clin Chem ; 67(9): 1271-1280, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34263289

RESUMO

BACKGROUND: Intraoperative tissue analysis and identification are critical to guide surgical procedures and improve patient outcomes. Here, we describe the clinical translation and evaluation of the MasSpec Pen technology for molecular analysis of in vivo and freshly excised tissues in the operating room (OR). METHODS: An Orbitrap mass spectrometer equipped with a MasSpec Pen interface was installed in an OR. A "dual-path" MasSpec Pen interface was designed and programmed for the clinical studies with 2 parallel systems that facilitated the operation of the MasSpec Pen. The MasSpec Pen devices were autoclaved before each surgical procedure and were used by surgeons and surgical staff during 100 surgeries over a 12-month period. RESULTS: Detection of mass spectral profiles from 715 in vivo and ex vivo analyses performed on thyroid, parathyroid, lymph node, breast, pancreatic, and bile duct tissues during parathyroidectomies, thyroidectomies, breast, and pancreatic neoplasia surgeries was achieved. The MasSpec Pen enabled gentle extraction and sensitive detection of various molecular species including small metabolites and lipids using a droplet of sterile water without causing apparent tissue damage. Notably, effective molecular analysis was achieved while no limitations to sequential histologic tissue analysis were identified and no device-related complications were reported for any of the patients. CONCLUSIONS: This study shows that the MasSpec Pen system can be successfully incorporated into the OR, allowing direct detection of rich molecular profiles from tissues with a seconds-long turnaround time that could be used to inform surgical and clinical decisions without disrupting tissue analysis workflows.


Assuntos
Neoplasias Pancreáticas , Humanos , Espectrometria de Massas , Paratireoidectomia , Glândula Tireoide
5.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260388

RESUMO

Intraoperative delineation of tumor margins is critical for effective pancreatic cancer surgery. Yet, intraoperative frozen section analysis of tumor margins is a time-consuming and often challenging procedure that can yield confounding results due to histologic heterogeneity and tissue-processing artifacts. We have previously described the development of the MasSpec Pen technology as a handheld mass spectrometry-based device for nondestructive tissue analysis. Here, we evaluated the usefulness of the MasSpec Pen for intraoperative diagnosis of pancreatic ductal adenocarcinoma based on alterations in the metabolite and lipid profiles in in vivo and ex vivo tissues. We used the MasSpec Pen to analyze 157 banked human tissues, including pancreatic ductal adenocarcinoma, pancreatic, and bile duct tissues. Classification models generated from the molecular data yielded an overall agreement with pathology of 91.5%, sensitivity of 95.5%, and specificity of 89.7% for discriminating normal pancreas from cancer. We built a second classifier to distinguish bile duct from pancreatic cancer, achieving an overall accuracy of 95%, sensitivity of 92%, and specificity of 100%. We then translated the MasSpec Pen to the operative room and predicted on in vivo and ex vivo data acquired during 18 pancreatic surgeries, achieving 93.8% overall agreement with final postoperative pathology reports. Notably, when integrating banked tissue data with intraoperative data, an improved agreement of 100% was achieved. The result obtained demonstrate that the MasSpec Pen provides high predictive performance for tissue diagnosis and compatibility for intraoperative use, suggesting that the technology may be useful to guide surgical decision-making during pancreatic cancer surgeries.


Assuntos
Tecnologia Biomédica , Margens de Excisão , Espectrometria de Massas , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/cirurgia , Idoso , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/cirurgia , Ducto Colédoco/patologia , Ducto Colédoco/cirurgia , Feminino , Humanos , Cuidados Intraoperatórios , Masculino , Pessoa de Meia-Idade , Pâncreas/patologia , Pâncreas/cirurgia , Neoplasias Pancreáticas/patologia , Estatística como Assunto
6.
Anal Chem ; 93(21): 7549-7556, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34008955

RESUMO

Analytical methods that allow rapid, sensitive, and specific chemical measurements are central to forensic analysis and essential to accelerating compound screening and confirmation. We have previously reported the development of the MasSpec Pen technology as an easy-to-use and disposable hand-held device integrated to a mass spectrometer for direct analysis and molecular profiling of biological samples. In this Technical Note, we describe a new apparatus that integrates the MasSpec Pen device with a subatmospheric pressure chemical ionization (sub-APCI) source and an ion trap mass spectrometer for detection and semiquantitative analysis of forensic-related compounds. Coupling the MasSpec Pen device to a sub-APCI source allowed semiquantitative analysis of the drugs cocaine and oxycodone, the agrochemicals atrazine and azoxystrobin, and the explosives trinitrotoluene and dinitroglycerin in under 20 s. Using chemical ionization, improved reproducibility and sensitivity for targeted chemical detection and compound identification was achieved while maintaining the user-friendly features of the hand-held MasSpec Pen device. Limits of detection in the high picogram to low nanogram range were obtained for the compounds analyzed, which are within the range of federal screening cutoffs and those reported for other ambient ionization MS techniques. Altogether, the MasSpec Pen sub-APCI system described enabled rapid and semiquantitative chemical analysis for forensic applications and could be further adapted and applied to other areas of chemical testing.


Assuntos
Pressão Atmosférica , Substâncias Explosivas , Cromatografia Gasosa , Espectrometria de Massas , Reprodutibilidade dos Testes
7.
Anal Chem ; 92(17): 11535-11542, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32786489

RESUMO

Minimally invasive robotic-assisted surgeries have been increasingly used as a first-line of treatment for patients undergoing oncologic surgeries. In-situ tissue identification is critical to guide tissue resection and assist decision-making. Traditional intraoperative histopathologic analysis of frozen tissue sections can be time-consuming and present logistical challenges which interrupt surgical workflows. We report the development and implementation of a laparoscopic, drop-in version of the MasSpec Pen device integrated into the da Vinci Xi Surgical system for in vivo tissue analysis in a robotic-assisted porcine surgery. We evaluated the performance of the drop-in MasSpec Pen during surgery by introducing the device into the animal upper gastrointestinal system and performing in vivo analyses of the stomach and liver, including charred and bloody tissues after electrocauterization. The molecular profiles obtained included ions tentatively identified as metabolites and lipids typically observed with MasSpec Pen analysis, without causing observable tissue damage. Statistical classifiers built to distinguish porcine liver and stomach tissues using the in vivo data yielded an overall tissue identification accuracy of 98% (n = 53 analyses). The results provide evidence that the drop-in MasSpec Pen developed can be used to acquire mass spectra in vivo during a robotic-assisted surgery and might be used as an in vivo tissue assessment tool to help guide surgical resections and streamline surgical workflows.


Assuntos
Procedimentos Cirúrgicos do Sistema Digestório/instrumentação , Desenho de Equipamento/instrumentação , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Procedimentos Cirúrgicos Robóticos/instrumentação , Cirurgia Vídeoassistida/instrumentação , Animais , Feminino , Humanos , Técnicas In Vitro , Laparoscopia , Metabolismo dos Lipídeos , Espectrometria de Massas , Próteses e Implantes , Suínos
8.
Anal Chem ; 92(12): 8386-8395, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32421308

RESUMO

Free fatty acids (FA) are a vital component of cells and are critical to cellular structure and function, so much so that alterations in FA are often associated with cell malfunction and disease. Analysis of FA from biological samples can be achieved by mass spectrometry (MS), but these analyses are often not capable of distinguishing the fine structural alterations within FA isomers and often limited to global profiling of lipids without spatial resolution. Here, we present the use of ultraviolet photodissociation (UVPD) for the characterization of double bond positional isomers of charge inverted dication·FA complexes and the subsequent implementation of this method for online desorption electrospray ionization (DESI) MS imaging of FA isomers from human tissue sections. This method allows relative quantification of FA isomers from heterogeneous biological tissue sections, yielding spatially resolved information about alterations in double bond isomers within these samples. Applying this method to the analysis of the monounsaturated FA 18:1 within breast cancer subtypes uncovered a correlation between double bond positional isomer abundance and the hormone receptor status of the tissue sample, an important factor in the prognosis and treatment of breast cancer patients. This result further validates similar studies that suggest FA synthase activity and FA isomer abundances are significantly altered within breast cancer tissue.


Assuntos
Neoplasias da Mama/química , Ácidos Graxos/análise , Raios Ultravioleta , Neoplasias da Mama/patologia , Feminino , Humanos , Espectrometria de Massas , Estrutura Molecular , Processos Fotoquímicos
9.
Sci Rep ; 9(1): 15690, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666535

RESUMO

Endometriosis is a pathologic condition affecting approximately 10% of women in their reproductive years. Characterized by abnormal growth of uterine endometrial tissue in other body areas, endometriosis can cause severe abdominal pain and/or infertility. Despite devastating consequences to patients' quality of life, the causes of endometriosis are not fully understood and validated diagnostic markers for endometriosis have not been identified. Molecular analyses of ectopic and eutopic endometrial tissues could lead to enhanced understanding of the disease. Here, we apply desorption electrospray ionization (DESI) mass spectrometry (MS) imaging to chemically and spatially characterize the molecular profiles of 231 eutopic and ectopic endometrial tissues from 89 endometriosis patients. DESI-MS imaging allowed clear visualization of endometrial glandular and stromal regions within tissue samples. Statistical models built from DESI-MS imaging data allowed classification of endometriosis lesions with overall accuracies of 89.4%, 98.4%, and 98.8% on training, validation, and test sample sets, respectively. Further, molecular markers that are significantly altered in ectopic endometrial tissues when compared to eutopic tissues were identified, including fatty acids and glycerophosphoserines. Our study showcases the value of MS imaging to investigate the molecular composition of endometriosis lesions and pinpoints metabolic markers that may provide new knowledge on disease pathogenesis.


Assuntos
Biomarcadores/metabolismo , Endometriose/diagnóstico por imagem , Endométrio/diagnóstico por imagem , Espectrometria de Massas por Ionização por Electrospray , Adulto , Coristoma/diagnóstico por imagem , Coristoma/metabolismo , Coristoma/patologia , Endometriose/patologia , Endométrio/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Imagem Molecular/métodos , Qualidade de Vida
10.
Anal Chem ; 91(19): 12509-12516, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490676

RESUMO

Developing alternative MS/MS strategies to distinguish isomeric lipids has become a high impact goal in shotgun lipidomics. Novel approaches have been developed to resolve structural features that are not discernible by traditional shotgun methods and have consequently promoted the discovery of new disease biomarkers. However, these methods have largely been limited to characterizing lipids with low structural complexity. Here, ultraviolet photodissociation (UVPD) strategies for phospholipid characterization are expanded for analysis of cardiolipins (CL), a class of phospholipids that exhibits a higher degree of structural complexity. A hybrid collision induced dissociation/193 nm UVPD (CID/UVPD) approach was implemented to pinpoint the location of both double bond and cyclopropyl unsaturations on the four acyl chains of CLs. This strategy was complemented with CID for the de novo elucidation of unknown CLs in biological extracts.


Assuntos
Cardiolipinas/química , Espectrometria de Massas , Processos Fotoquímicos , Raios Ultravioleta
12.
Clin Chem ; 65(5): 674-683, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30770374

RESUMO

BACKGROUND: Accurate tissue diagnosis during ovarian cancer surgery is critical to maximize cancer excision and define treatment options. Yet, current methods for intraoperative tissue evaluation can be time intensive and subjective. We have developed a handheld and biocompatible device coupled to a mass spectrometer, the MasSpec Pen, which uses a discrete water droplet for molecular extraction and rapid tissue diagnosis. Here we evaluated the performance of this technology for ovarian cancer diagnosis across different sample sets, tissue types, and mass spectrometry systems. METHODS: MasSpec Pen analyses were performed on 192 ovarian, fallopian tube, and peritoneum tissue samples. Samples were evaluated by expert pathologists to confirm diagnosis. Performance using an Orbitrap and a linear ion trap mass spectrometer was tested. Statistical models were generated using machine learning and evaluated using validation and test sets. RESULTS: High performance for high-grade serous carcinoma (n = 131; clinical sensitivity, 96.7%; specificity, 95.7%) and overall cancer (n = 138; clinical sensitivity, 94.0%; specificity, 94.4%) diagnoses was achieved using Orbitrap data. Variations in the mass spectra from normal tissue, low-grade, and high-grade serous ovarian cancers were observed. Discrimination between cancer and fallopian tube or peritoneum tissues was also achieved with accuracies of 92.6% and 87.9%, respectively, and 100% clinical specificity for both. Using ion trap data, excellent results for high-grade serous cancer vs normal ovarian differentiation (n = 40; clinical sensitivity, 100%; specificity, 100%) were obtained. CONCLUSIONS: The MasSpec Pen, together with machine learning, provides robust molecular models for ovarian serous cancer prediction and thus has potential for clinical use for rapid and accurate ovarian cancer diagnosis.


Assuntos
Espectrometria de Massas/instrumentação , Neoplasias Ovarianas/diagnóstico , Tubas Uterinas/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/metabolismo , Peritônio/metabolismo , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estudos de Tempo e Movimento
13.
J Am Soc Mass Spectrom ; 30(2): 376-380, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30569427

RESUMO

Ambient ionization mass spectrometry (MS) techniques, such as desorption electrospray ionization (DESI), have been increasingly used due to their simplicity, minimal sample preparation requirements, and potential applications in the field and the clinic. However, due to their intrinsic nature, the performance of these methods is susceptible to variations in ambient conditions. Here, we present data that suggests DESI-MS analysis becomes inconsistent below a relative humidity (RH) level of ~ 35%. At low RH, we hypothesize that the DESI spray is subjected to frequent electrical discharges, resulting in unstable ionization and atypical mass spectra. Consequentially, poor image quality is observed when used for tissue imaging. Our results suggest that RH control should be considered in DESI-MS experiments to assure data quality. Graphical Abstract ᅟ.

14.
Anal Chem ; 90(17): 10100-10104, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30080398

RESUMO

Desorption electrospray ionization (DESI) mass spectrometry imaging has become a powerful strategy for analysis of tissue sections, enabling differentiation of normal and diseased tissue based on changes in the lipid profiles. The most common DESI workflow involves collection of MS1 spectra as the DESI spray is rastered over a tissue section. Relying on MS1 spectra inherently limits the ability to differentiate isobaric and isomeric species or evaluate variations in the relative abundances of key isomeric lipids, such as double-bond positional isomers which may distinguish normal and diseased tissues. Here, 193 nm ultraviolet photodissociation (UVPD), a technique capable of differentiating double-bond positional isomers, is coupled with DESI to map differences in the double-bond isomer composition in tissue sections in a fast, high throughput manner compatible with imaging applications.


Assuntos
Fosfolipídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Raios Ultravioleta , Isomerismo
15.
Anal Chem ; 90(13): 7785-7789, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29800516

RESUMO

Analysis of large biomolecules including proteins has proven challenging using ambient ionization mass spectrometry imaging techniques. Here, we have successfully optimized desorption electrospray ionization mass spectrometry (DESI-MS) to detect intact proteins directly from tissue sections and further integrated DESI-MS to a high field asymmetric waveform ion mobility (FAIMS) device for protein imaging. Optimized DESI-FAIMS-MS parameters were used to image mouse kidney, mouse brain, and human ovarian and breast tissue samples, allowing detection of 11, 16, 14, and 16 proteoforms, respectively. Identification of protein species detected by DESI-MS was performed on-tissue by top-down ultraviolet photodissociation (UVPD) and collision induced dissociation (CID) as well as using tissue extracts by bottom-up CID and top-down UVPD. Our results demonstrate that DESI-MS imaging is suitable for the analysis of the distribution of proteins within biological tissue sections.


Assuntos
Imagem Molecular/métodos , Proteínas/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Neoplasias da Mama/metabolismo , Humanos , Camundongos
16.
Curr Opin Chem Biol ; 42: 138-146, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29275246

RESUMO

Tissues present complex biochemical and morphological composition associated with their various cell types and physiological functions. Mass spectrometry (MS) imaging technologies are powerful tools to investigate the molecular information from biological tissue samples and visualize their complex spatial distributions. Coupling of gas-phase ion mobility spectrometry (IMS) technologies to MS imaging has been increasingly explored to improve performance for biological tissue imaging. This approach allows improved detection of low abundance ions and separation of isobaric molecular species, thus resulting in more accurate determination of the spatial distribution of molecular ions. In this review, we highlight recent advances in the field focusing on promising applications of these technologies for metabolite, lipid and protein tissue imaging.


Assuntos
Pesquisa Biomédica , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodos , Lipídeos/análise , Lipídeos/química , Proteínas/análise , Proteínas/química , Proteínas/metabolismo
17.
J Am Soc Mass Spectrom ; 28(6): 1166-1174, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28247296

RESUMO

Ambient ionization mass spectrometry has been widely applied to image lipids and metabolites in primary cancer tissues with the purpose of detecting and understanding metabolic changes associated with cancer development and progression. Here, we report the use of desorption electrospray ionization mass spectrometry (DESI-MS) to image metastatic breast and thyroid cancer in human lymph node tissues. Our results show clear alterations in lipid and metabolite distributions detected in the mass spectra profiles from 42 samples of metastatic thyroid tumors, metastatic breast tumors, and normal lymph node tissues. 2D DESI-MS ion images of selected molecular species allowed discrimination and visualization of specific histologic features within tissue sections, including regions of metastatic cancer, adjacent normal lymph node, and fibrosis or adipose tissues, which strongly correlated with pathologic findings. In thyroid cancer metastasis, increased relative abundances of ceramides and glycerophosphoinisitols were observed. In breast cancer metastasis, increased relative abundances of various fatty acids and specific glycerophospholipids were seen. Trends in the alterations in fatty acyl chain composition of lipid species were also observed through detailed mass spectra evaluation and chemical identification of molecular species. The results obtained demonstrate DESI-MSI as a potential clinical tool for the detection of breast and thyroid cancer metastasis in lymph nodes, although further validation is needed. Graphical Abstract Desorption electrospray ionization mass spectrometry imaging is used to differentiate metastatic cancer from adjacent lymph node tissue.


Assuntos
Neoplasias da Mama/patologia , Linfonodos/química , Linfonodos/diagnóstico por imagem , Espectrometria de Massas por Ionização por Electrospray/métodos , Neoplasias da Glândula Tireoide/patologia , Ácidos Graxos/análise , Feminino , Glicerofosfolipídeos/análise , Glicolipídeos/análise , Humanos , Processamento de Imagem Assistida por Computador , Linfonodos/patologia , Esfingolipídeos/análise
18.
Anal Chem ; 88(23): 11533-11541, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27782388

RESUMO

Ambient ionization mass spectrometry imaging (MSI) has been increasingly used to investigate the molecular distribution of biological tissue samples. Here, we report the integration and optimization of desorption electrospray ionization (DESI) and liquid-microjunction surface sampling probe (LMJ-SSP) with a chip-based high-field asymmetric waveform ion mobility spectrometry (FAIMS) device to image metabolites, lipids, and proteins in biological tissue samples. Optimized FAIMS parameters for specific molecular classes enabled semitargeted detection of multiply charged molecular species at enhanced signal-to-noise ratios (S/N), improved visualization of spatial distributions, and, most importantly, allowed detection of species which were unseen by ambient ionization MSI alone. Under static DESI-FAIMS conditions selected for transmission of doubly charged cardiolipins (CL), for example, detection of 71 different CL species was achieved in rat brain, 23 of which were not observed by DESI alone. Diagnostic CL were imaged in a human thyroid tumor sample with reduced interference of isobaric species. LMJ-SSP-FAIMS enabled detection of 84 multiply charged protein ions in rat brain tissue, 66 of which were exclusive to this approach. Spatial visualization of proteins in substructures of rat brain, and in human ovarian cancerous, necrotic, and normal tissues was achieved. Our results indicate that integration of FAIMS with ambient ionization MS allows improved detection and imaging of selected molecular species. We show that this methodology is valuable in biomedical applications of MSI for detection of multiply charged lipids and proteins from biological tissues.


Assuntos
Lipídeos/análise , Imagem Molecular , Neoplasias Ovarianas/química , Ovário/química , Proteínas/análise , Neoplasias da Glândula Tireoide/química , Animais , Encéfalo , Feminino , Humanos , Espectrometria de Massas , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA