Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 7(10): 8498-508, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23952000

RESUMO

Organic nanowires and microfibers are excellent model systems for charge transport in organic semiconductors under nanoscopic confinement and may be relevant for future nanoelectronic devices. For this purpose, however, the preparation of well-ordered organic nanowires with uniform lateral dimensions remains a challenge to achieve. Here, we used the self-assembly of oligopeptide-substituted perylene bisimides and quaterthiophenes to obtain well-ordered nanofibrils. The individual nanofibrils were investigated by spectroscopic and imaging methods, and the preparation of hierarchically structured microfibers of aligned nanofibrils allowed for a comprehensive structural characterization on all length scales with molecular level precision. Thus, we showed that the molecular chirality resulted in supramolecular helicity, which supposedly serves to suppress lateral aggregation. We also proved that, as a result, the individual nanofibrils comprised a single stack of the π-conjugated molecules at their core. Moreover, the conformational flexibility between the hydrogen-bonded oligopeptides and the π-π stacked chromophores gave rise to synergistically enhanced strong π-π interactions and hydrogen-bonding. The result is a remarkably tight π-π stacking inside the nanofibrils, irrespective of the electronic nature of the employed chromophores, which may render them suitable nanowire models to investigate one-dimensional charge transport along defined π-π stacks of p-type or n-type semiconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA