Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Neurochem ; 127(1): 101-13, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23607684

RESUMO

Uncontrolled elongation of glycogen chains, not adequately balanced by their branching, leads to the formation of an insoluble, presumably neurotoxic, form of glycogen called polyglucosan. To test the suspected pathogenicity of polyglucosans in neurological glycogenoses, we have modeled the typical glycogenosis Adult Polyglucosan Body Disease (APBD) by suppressing glycogen branching enzyme 1 (GBE1, EC 2.4.1.18) expression using lentiviruses harboring short hairpin RNA (shRNA). GBE1 suppression in embryonic cortical neurons led to polyglucosan accumulation and associated apoptosis, which were reversible by rapamycin or starvation treatments. Further analysis revealed that rapamycin and starvation led to phosphorylation and inactivation of glycogen synthase (GS, EC 2.4.1.11), dephosphorylated and activated in the GBE1-suppressed neurons. These protective effects of rapamycin and starvation were reversed by overexpression of phosphorylation site mutant GS only if its glycogen binding site was intact. While rapamycin and starvation induce autophagy, autophagic maturation was not required for their corrective effects, which prevailed even if autophagic flux was inhibited by vinblastine. Furthermore, polyglucosans were not observed in any compartment along the autophagic pathway. Our data suggest that glycogen branching enzyme repression in glycogenoses can cause pathogenic polyglucosan buildup, which might be corrected by GS inhibition.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/efeitos dos fármacos , Glucanos/toxicidade , Glicogênio Sintase/antagonistas & inibidores , Síndromes Neurotóxicas/enzimologia , Síndromes Neurotóxicas/prevenção & controle , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Trifosfato de Adenosina/metabolismo , Idoso , Animais , Apoptose/efeitos dos fármacos , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Inibidores Enzimáticos , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Doença de Depósito de Glicogênio/metabolismo , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Microscopia de Fluorescência , Síndromes Neurotóxicas/genética , Fosforilação , Cultura Primária de Células , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Inanição/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Transdução Genética
2.
J Struct Biol ; 177(1): 106-12, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22079399

RESUMO

The nuclear lamina is a major structural element of the nucleus and is predominately composed of the intermediate filament lamin proteins. Missense mutations in the human lamins A/C cause a family of laminopathic diseases, with no known mechanistic link between the position of the mutation and the resulting disease phenotypes. The Caenorhabditis elegans lamin (Ce-lamin) is structurally and functionally homologous to human lamins, and recent advances have allowed detailed structural analysis of Ce-lamin filaments both in vitro and in vivo. Here, we studied the effect of laminopathic mutations on Ce-lamin filament assembly in vitro and the corresponding physiological phenotypes in animals. We focused on three disease-linked mutations, Q159K, T164P, and L535P, which have previously been shown to affect lamin structure and nuclear localization. Mutations prevented the proper assembly of Ce-lamin into filament and/or paracrystalline arrays. Disease-like phenotypes were observed in strains expressing low levels of these mutant lamins, including decreased fertility and motility coincident with muscle lesions. In addition, the Q159K- and T164P-expressing strains showed a reduced lifespan. Thus, different disease-linked mutations in Ce-lamin exhibit major effects in vivo and in vitro. Using C. elegans as a model system, a comprehensive analysis of the effects of specific lamin mutations from the level of in vitro filament assembly to the physiology of the organism will help uncover the mechanistic differences between these different lamin mutations.


Assuntos
Caenorhabditis elegans/genética , Proteínas de Filamentos Intermediários/química , Laminas/química , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Tomografia com Microscopia Eletrônica , Fertilidade/genética , Regulação da Expressão Gênica , Proteínas de Filamentos Intermediários/análise , Proteínas de Filamentos Intermediários/genética , Filamentos Intermediários/genética , Filamentos Intermediários/metabolismo , Laminas/genética , Mutação de Sentido Incorreto , Lâmina Nuclear/química , Fenótipo
3.
Mol Biol Cell ; 23(4): 543-52, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22171324

RESUMO

Emerin and LEM2 are ubiquitous inner nuclear membrane proteins conserved from humans to Caenorhabditis elegans. Loss of human emerin causes Emery-Dreifuss muscular dystrophy (EDMD). To test the roles of emerin and LEM2 in somatic cells, we used null alleles of both genes to generate C. elegans animals that were either hypomorphic (LEM-2-null and heterozygous for Ce-emerin) or null for both proteins. Single-null and hypomorphic animals were viable and fertile. Double-null animals used the maternal pool of Ce-emerin to develop to the larval L2 stage, then arrested. Nondividing somatic cell nuclei appeared normal, whereas dividing cells had abnormal nuclear envelope and chromatin organization and severe defects in postembryonic cell divisions, including the mesodermal lineage. Life span was unaffected by loss of Ce-emerin alone but was significantly reduced in LEM-2-null animals, and double-null animals had an even shorter life span. In addition to striated muscle defects, double-null animals and LEM-2-null animals showed unexpected defects in smooth muscle activity. These findings implicate human LEM2 mutations as a potential cause of EDMD and further suggest human LEM2 mutations might cause distinct disorders of greater severity, since C. elegans lacking only LEM-2 had significantly reduced life span and smooth muscle activity.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Membrana/fisiologia , Mitose/fisiologia , Músculo Liso/fisiologia , Músculo Estriado/fisiologia , Proteínas Nucleares/fisiologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular , Proliferação de Células , Cromatina/metabolismo , Cromatina/ultraestrutura , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Longevidade/genética , Proteínas de Membrana/genética , Mesoderma/crescimento & desenvolvimento , Mesoderma/metabolismo , Mitose/genética , Contração Muscular/genética , Contração Muscular/fisiologia , Músculo Liso/metabolismo , Músculo Estriado/metabolismo , Distrofia Muscular de Emery-Dreifuss/genética , Mutação , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Proteínas Nucleares/genética , Sarcômeros/metabolismo , Sarcômeros/fisiologia , Tela Subcutânea/crescimento & desenvolvimento , Tela Subcutânea/metabolismo
4.
Mol Biol Cell ; 22(15): 2716-28, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21653823

RESUMO

Mutations in the human LMNA gene underlie many laminopathic diseases, including Emery-Dreifuss muscular dystrophy (EDMD); however, a mechanistic link between the effect of mutations on lamin filament assembly and disease phenotypes has not been established. We studied the ΔK46 Caenorhabditis elegans lamin mutant, corresponding to EDMD-linked ΔK32 in human lamins A and C. Cryo-electron tomography of lamin ΔK46 filaments in vitro revealed alterations in the lateral assembly of dimeric head-to-tail polymers, which causes abnormal organization of tetrameric protofilaments. Green fluorescent protein (GFP):ΔK46 lamin expressed in C. elegans was found in nuclear aggregates in postembryonic stages along with LEM-2. GFP:ΔK46 also caused mislocalization of emerin away from the nuclear periphery, consistent with a decreased ability of purified emerin to associate with lamin ΔK46 filaments in vitro. GFP:ΔK46 animals had motility defects and muscle structure abnormalities. These results show that changes in lamin filament structure can translate into disease-like phenotypes via altering the localization of nuclear lamina proteins, and suggest a model for how the ΔK32 lamin mutation may cause EDMD in humans.


Assuntos
Caenorhabditis elegans/genética , Citoesqueleto/genética , Lamina Tipo A/genética , Proteínas de Membrana/metabolismo , Distrofia Muscular de Emery-Dreifuss/genética , Lâmina Nuclear/genética , Proteínas Nucleares/metabolismo , Proteínas Recombinantes/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/metabolismo , Clonagem Molecular , Microscopia Crioeletrônica , Citoesqueleto/metabolismo , Modelos Animais de Doenças , Escherichia coli , Estudos de Associação Genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Lamina Tipo A/metabolismo , Dados de Sequência Molecular , Movimento , Músculos/fisiopatologia , Distrofia Muscular de Emery-Dreifuss/metabolismo , Mutação , Lâmina Nuclear/metabolismo , Fenótipo , Plasmídeos , Proteínas Recombinantes/genética , Transformação Bacteriana
5.
Mol Biol Cell ; 22(14): 2436-47, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21613538

RESUMO

Enteropathogenic Escherichia coli (EPEC) is an important human pathogen that causes acute infantile diarrhea. The type IV bundle-forming pili (BFP) of typical EPEC strains are dynamic fibrillar organelles that can extend out and retract into the bacterium. The bfpF gene encodes for BfpF, a protein that promotes pili retraction. The BFP are involved in bacterial autoaggregation and in mediating the initial adherence of the bacterium with its host cell. Importantly, BFP retraction is implicated in virulence in experimental human infection. How pili retraction contributes to EPEC pathogenesis at the cellular level remains largely obscure, however. In this study, an effort has been made to address this question using engineered EPEC strains with induced BFP retraction capacity. We show that the retraction is important for tight-junction disruption and, to a lesser extent, actin-rich pedestal formation by promoting efficient translocation of bacterial protein effectors into the host cells. A model is proposed whereby BFP retraction permits closer apposition between the bacterial and the host cell surfaces, thus enabling timely and effective introduction of bacterial effectors into the host cell via the type III secretion apparatus. Our studies hence suggest novel insights into the involvement of pili retraction in EPEC pathogenesis.


Assuntos
Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/microbiologia , Fímbrias Bacterianas/fisiologia , Animais , Arabinose/metabolismo , Células CACO-2 , Linhagem Celular , Diarreia Infantil/microbiologia , Cães , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/metabolismo , Células HeLa , Humanos , Recém-Nascido , Fosforilação , Tirosina/metabolismo
6.
Cell Motil Cytoskeleton ; 66(10): 791-7, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19235201

RESUMO

Specific mutations in human LMNA or loss of ZMPSTE26 activity cause abnormal processing of lamin A and early aging diseases, including Hutchinson Gilford progeria syndrome (HGPS). HGPS fibroblasts in culture undergo age-dependent progressive changes in nuclear architecture. Treating these cells with farnesyl transferase inhibitors (FTIs) reverse these nuclear phenotypes and also extend lifespan of mice HGPS models. Dermal cells derived from healthy old humans also accumulate the abnormally processed lamin A. However, the effect of FTIs on normal aging cells was not tested. Aging adult C. elegans cells show changes in nuclear architecture similar to HGPS fibroblasts and down regulating lamin expression in adult C. elegans reduces their lifespan. Here, we show that nuclei of adult C. elegans, in which lamin is down-regulated, have similar phenotypes to normal aging nuclei, but at an earlier age. We further show that treating adult C. elegans with the FTI gliotoxin reverses nuclear phenotypes and improves motility of aging worms. However, the average lifespan of the gliotoxin-treated animals was similar to that of untreated animals. These results suggest that lamins are involved in the process of normal aging in C. elegans.


Assuntos
Núcleo Celular/ultraestrutura , Gliotoxina/farmacologia , Animais , Caenorhabditis elegans , Movimento Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Senescência Celular , Farnesiltranstransferase/antagonistas & inibidores , Humanos , Lamina Tipo A/genética , Lamina Tipo A/fisiologia , Longevidade/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Movimento/efeitos dos fármacos , Lâmina Nuclear/fisiologia , Fenótipo
7.
J Neurosci ; 29(1): 86-97, 2009 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-19129387

RESUMO

The adult mammalian brain maintains a prominent stem cell niche in the subventricular zone supplying new neurons to the olfactory bulb. We examined the dynamics of synaptogenesis by imaging the formation and elimination of clusters of a postsynaptic marker (PSD95), genetically targeted to adult-born neurons. We imaged in vivo adult-born periglomerular neurons (PGNs) during two phases of development, immaturity and maturity. Immature PGNs showed high levels of PSD95 puncta dynamics during 12-72 h intervals. Mature PGNs were more stable compared with immature PGNs but still remained dynamic, suggesting that synaptogenesis persists long after these neurons integrated into the network. By combining intrinsic signal and two photon imaging we followed PSD95 puncta in sensory enriched glomeruli. Sensory input upregulated the development of adult-born PGNs only in enriched glomeruli. Our data provide evidence for an activity-based mechanism that enhances synaptogenesis of adult-born PGNs during their initial phases of development.


Assuntos
Células-Tronco Adultas/citologia , Encéfalo/citologia , Células Receptoras Sensoriais/fisiologia , Sinapses/fisiologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células , Dendritos/metabolismo , Dendritos/ultraestrutura , Proteína 4 Homóloga a Disks-Large , Proteínas de Fluorescência Verde/genética , Guanilato Quinases , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Microscopia Confocal/métodos , Microscopia Eletrônica de Transmissão/métodos , Proteínas do Tecido Nervoso/metabolismo , Receptores Odorantes/genética , Células Receptoras Sensoriais/ultraestrutura , Sinapses/ultraestrutura , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
8.
J Cell Biol ; 178(4): 661-73, 2007 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-17698609

RESUMO

Barrier to autointegration factor (BAF) binds double-stranded DNA, selected histones, transcription regulators, lamins, and LAP2-emerin-MAN1 (LEM) domain proteins. During early Caenorhabditis elegans embryogenesis, BAF-1 is required to organize chromatin, capture segregated chromosomes within the nascent nuclear envelope, and assemble lamin and LEM domain proteins in reforming nuclei. In this study, we used C. elegans with a homozygous deletion of the baf-1 gene, which survives embryogenesis and larval stages, to report that BAF-1 regulates maturation and survival of the germline, cell migration, vulva formation, and the timing of seam cell fusion. In the seam cells, BAF-1 represses the expression of the EFF-1 fusogen protein, but fusion still occurs in C. elegans lacking both baf-1 and eff-1. This suggests the existence of an eff-1-independent mechanism for cell fusion. BAF-1 is also required to maintain the integrity of specific body wall muscles in adult animals, directly implicating BAF in the mechanism of human muscular dystrophies (laminopathies) caused by mutations in the BAF-binding proteins emerin and lamin A.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Proteínas de Transporte/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Movimento Celular , Células Epidérmicas , Epiderme/metabolismo , Humanos , Músculos/metabolismo , Distrofia Muscular de Emery-Dreifuss/metabolismo , Membrana Nuclear/metabolismo
9.
Proc Natl Acad Sci U S A ; 102(46): 16690-5, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16269543

RESUMO

Mutations in lamins cause premature aging syndromes in humans, including the Hutchinson-Gilford Progeria Syndrome (HGPS) and Atypical Werner Syndrome. It has been shown that HGPS cells in culture undergo age-dependent progressive changes in nuclear architecture. However, it is unknown whether similar changes in nuclear architecture occur during the normal aging process. We have observed that major changes of nuclear architecture accompany Caenorhabditis elegans aging. We found that the nuclear architecture in most nonneuronal cell types undergoes progressive and stochastic age-dependent alterations, such as changes of nuclear shape and loss of peripheral heterochromatin. Furthermore, we show that the rate of these alterations is influenced by the insulin/IGF-1 like signaling pathway and that reducing the level of lamin and lamin-associated LEM domain proteins leads to shortening of lifespan. Our work not only provides evidence for changes of nuclear architecture during the normal aging process of a multicellular organism, but also suggests that HGPS is likely a result of acceleration of the normal aging process. Because the nucleus is vital for many cellular functions, our studies raise the possibility that the nucleus is a prominent focal point for regulating aging.


Assuntos
Envelhecimento/metabolismo , Caenorhabditis elegans/ultraestrutura , Lâmina Nuclear/ultraestrutura , Animais , Animais Geneticamente Modificados , Western Blotting , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Interferência de RNA , Transdução de Sinais
10.
Proc Natl Acad Sci U S A ; 101(18): 6987-92, 2004 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-15100407

RESUMO

Caenorhabditis elegans mtf-1 encodes matefin, which has a predicted SUN domain, a coiled-coil region, an anti-erbB-2 IgG domain, and two hydrophobic regions. We show that matefin is a nuclear membrane protein that colocalizes in vivo with Ce-lamin, the single nuclear lamin protein in C. elegans, and binds Ce-lamin in vitro but does not require Ce-lamin for its localization. Matefin is detected in all embryonic cells until midembryogenesis and thereafter only in germ-line cells. Embryonic matefin is maternally deposited, and matefin is the first nuclear membrane protein known to have germ line-restricted expression. Animals homozygous for an mtf-1 deletion allele show that matefin is essential for germ line maturation and survival. However, matefin is also required for embryogenesis because mtf-1 (RNAi) embryos die around the approximately 300-cell stage with defects in nuclear structure, DNA content, and chromatin morphology. Down-regulating matefin in mes-3 animals only slightly enhances embryonic lethality, and elimination of UNC-84, the only other SUN-domain gene in C. elegans, has no affect on mtf-1 (RNAi) animals. Thus, mtf-1 mediates a previously uncharacterized pathway(s) required for embryogenesis as well as germ line proliferation or survival.


Assuntos
Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Laminas/metabolismo , Membrana Nuclear/metabolismo , Animais , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Estrutura Terciária de Proteína , Interferência de RNA
11.
Mol Biol Cell ; 14(10): 4230-7, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14517331

RESUMO

Gp210 is an evolutionarily conserved membrane protein of the nuclear pore complex (NPC). We studied the phenotypes produced by RNAi-induced downregulation of gp210 in both human (HeLa) cells and Caenorhabditis elegans embryos. HeLa cell viability requires Gp210 activity. The dying cells accumulated clustered NPCs and aberrant membrane structures at the nuclear envelope, suggesting that gp210 is required directly or indirectly for nuclear pore formation and dilation as well as the anchoring or structural integrity of mature NPCs. Essential roles for gp210 were confirmed in C. elegans, where RNAi-induced reduction of gp210 caused embryonic lethality. The nuclear envelopes of embryos with reduced gp210 also had aberrant nuclear membrane structures and clustered NPCs, confirming that gp210 plays critical roles at the nuclear membrane through mechanisms that are conserved from nematodes to humans.


Assuntos
Caenorhabditis elegans/citologia , Glicoproteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Sobrevivência Celular , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Células HeLa , Humanos , Microscopia Eletrônica , Complexo de Proteínas Formadoras de Poros Nucleares , RNA Interferente Pequeno/farmacologia
12.
J Struct Biol ; 140(1-3): 232-40, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12490171

RESUMO

Nuclear membranes and nuclear pore complexes (NPCs) are conserved in both animals and plants. However, the lamina composition and the dimensions of NPCs vary between plants, yeast, and vertebrates. In this study, we established a protocol that preserves the structure of Caenorhabditis elegans embryonic cells for high-resolution studies with thin-section transmission electron microscopy (TEM). We show that the NPCs are bigger in C. elegans embryos than in yeast, with dimensions similar to those in higher eukaryotes. We also localized the C. elegans nuclear envelope proteins Ce-lamin and Ce-emerin by pre-embedding gold labeling immunoelectron microscopy. Both proteins are present at or near the inner nuclear membrane. A fraction of Ce-lamin, but not Ce-emerin, is present in the nuclear interior. Removing the nuclear membranes leaves both Ce-lamin and Ce-emerin associated with the chromatin. Eliminating the single lamin protein caused cell death as visualized by characteristic changes in nuclear architecture including condensation of chromatin, clustering of NPCs, membrane blebbing, and the presence of vesicles inside the nucleus. Taken together, these results show evolutionarily conserved protein localization, interactions, and functions of the C. elegans nuclear envelope.


Assuntos
Caenorhabditis elegans/ultraestrutura , Núcleo Celular/ultraestrutura , Membrana Nuclear/ultraestrutura , Animais , Caenorhabditis elegans/embriologia , Morte Celular , Núcleo Celular/metabolismo , Imuno-Histoquímica , Laminas/metabolismo , Proteínas de Membrana/metabolismo , Microscopia Eletrônica , Microscopia Imunoeletrônica , Lâmina Nuclear , Proteínas Nucleares , Interferência de RNA , Timopoietinas/metabolismo
13.
Exp Cell Res ; 281(1): 50-62, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12441129

RESUMO

Heparanase is an endo-beta-D-glucuronidase involved in degradation of heparan sulfate (HS) and extracellular matrix (ECM) of a wide range of cells of vertebrate and invertebrate tissues. The enzymatic activity of heparanase is characterized by specific intrachain cleavage of glycosidic bonds with a hydrolase mechanism. This enzyme facilitates cell invasion and hence plays a role in tumor metastasis, angiogenesis, inflammation, and autoimmunity. Although the expression pattern and molecular properties of heparanase have been characterized, its subcellular localization has not been unequivocally determined. We have previously suggested that heparanase subcellular localization is a major determinant in regulating the enzyme's biological functions. In the present study we examined heparanase localization in three different cell types, utilizing immunofluorescent staining and electron microscopy. Our results indicate that heparanase is localized primarily within lysosomes and the Golgi apparatus. A construct composed of heparanase cDNA fused to green fluorescent protein, utilized in order to visualize the enzyme within living cells, confirmed its localization in acidic vesicles. We suggest that following synthesis, heparanase is transported into the Golgi apparatus and subsequently accumulates in a stable form within the lysosomes, where it functions in HS turnover. The lysosomal compartment may also serve as a site for heparanase confinement within the cells, limiting its secretion and uncontrolled extracellular activities associated with tumor metastasis and angiogenesis.


Assuntos
Glucuronidase/metabolismo , Lisossomos/enzimologia , Animais , Fibroblastos/citologia , Fibroblastos/enzimologia , Glucuronidase/genética , Complexo de Golgi/enzimologia , Proteínas de Fluorescência Verde , Heparitina Sulfato/metabolismo , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transfecção , Células Tumorais Cultivadas/enzimologia , Células Tumorais Cultivadas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA