Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Med Eng Phys ; 66: 107-112, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30850335

RESUMO

Surgeons, scientists and development engineers of surgical devices require phantoms and materials for testing and training purposes. Human or animal bones are the gold standard, but difficult to obtain, prepare and handle. While polyurethane foams can be used as a substitute for trabecular bone, cortical bone substitutes have not been evaluated. In this study, a standard surgical drill bit (⌀ 3.2 mm) with clinical process parameters was used to compare 5 different materials with bovine cortical bone: polyurethane with three different densities, short-fiber-filled epoxy and an artificial bone material. Drillings were repeated 100 times with 6 drill bits for each material. The results indicate that none of the substitute materials can be used without compromises. Axial drilling thrust forces in short-fiber-filled-epoxy are similar to bone. However, its hard fibers significantly deteriorate the chisel edge and flank face and increases the thrust force with each drilling (doubles within the first 10 repetitions) so that drill bits should only be used very limited times. The densest polyurethane (Renshape BM-5166) has the advantage of comparable torque values with bovine cortical bone (up to 60 repetitions). Additionally to these findings, a significant and potentially clinical relevant increase of axial drilling force (80%) and torque (56%) was found during 100 drillings in bovine cortical bone.


Assuntos
Substitutos Ósseos , Teste de Materiais , Procedimentos Ortopédicos/instrumentação , Animais , Bovinos , Osso Cortical/cirurgia , Fenômenos Mecânicos
2.
Ann Biomed Eng ; 45(9): 2088-2097, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28477057

RESUMO

Bone drilling is a surgical procedure commonly required in many surgical fields, particularly orthopedics, dentistry and head and neck surgeries. While the long-term effects of thermal bone necrosis are unknown, the thermal damage to nerves in spinal or otolaryngological surgeries might lead to partial paralysis. Previous models to predict the temperature elevation have been suggested, but were not validated or have the disadvantages of computation time and complexity which does not allow real time predictions. Within this study, an analytical temperature prediction model is proposed which uses the torque signal of the drilling process to model the heat production of the drill bit. A simple Green's disk source function is used to solve the three dimensional heat equation along the drilling axis. Additionally, an extensive experimental study was carried out to validate the model. A custom CNC-setup with a load cell and a thermal camera was used to measure the axial drilling torque and force as well as temperature elevations. Bones with different sets of bone volume fraction were drilled with two drill bits ([Formula: see text]1.8 mm and [Formula: see text]2.5 mm) and repeated eight times. The model was calibrated with 5 of 40 measurements and successfully validated with the rest of the data ([Formula: see text]C). It was also found that the temperature elevation can be predicted using only the torque signal of the drilling process. In the future, the model could be used to monitor and control the drilling process of surgeries close to vulnerable structures.


Assuntos
Temperatura Alta , Modelos Teóricos , Procedimentos Cirúrgicos Robóticos , Tíbia , Animais , Bovinos
3.
Acta Otolaryngol ; 137(4): 447-454, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28145157

RESUMO

CONCLUSION: A system for robotic cochlear implantation (rCI) has been developed and a corresponding surgical workflow has been described. The clinical feasibility was demonstrated through the conduction of a safe and effective rCI procedure. OBJECTIVES: To define a clinical workflow for rCI and demonstrate its feasibility, safety, and effectiveness within a clinical setting. METHOD: A clinical workflow for use of a previously described image guided surgical robot system for rCI was developed. Based on pre-operative images, a safe drilling tunnel targeting the round window was planned and drilled by the robotic system. Intra-operatively the drill path was assessed using imaging and sensor-based data to confirm the proximity of the facial nerve. Electrode array insertion was manually achieved under microscope visualization. Electrode array placement, structure preservation, and the accuracy of the drilling and of the safety mechanisms were assessed on post-operative CT images. RESULTS: Robotic drilling was conducted with an accuracy of 0.2 mm and safety mechanisms predicted proximity of the nerves to within 0.1 mm. The approach resulted in a minimal mastoidectomy and minimal incisions. Manual electrode array insertion was successfully performed through the robotically drilled tunnel. The procedure was performed without complications, and all surrounding structures were preserved.


Assuntos
Implante Coclear/métodos , Robótica , Estudos de Viabilidade , Humanos , Tomografia Computadorizada por Raios X , Fluxo de Trabalho
4.
Med Eng Phys ; 38(12): 1495-1504, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27789226

RESUMO

This research work aims at reducing temperature elevation of bone drilling. An extensive experimental study was conducted which focused on the investigation of three main measures to reduce the temperature elevation as used in industry: irrigation, interval drilling and drill bit designs. Different external irrigation rates (0 ml/min, 15 ml/min, 30 ml/min), continuously drilled interval lengths (2 mm, 1 mm, 0.5 mm) as well as two drill bit designs were tested. A custom single flute drill bit was designed with a higher rake angle and smaller chisel edge to generate less heat compared to a standard surgical drill bit. A new experimental setup was developed to measure drilling forces and torques as well as the 2D temperature field at any depth using a high resolution thermal camera. The results show that external irrigation is a main factor to reduce temperature elevation due not primarily to its effect on cooling but rather due to the prevention of drill bit clogging. During drilling, the build up of bone material in the drill bit flutes result in excessive temperatures due to an increase in thrust forces and torques. Drilling in intervals allows the removal of bone chips and cleaning of flutes when the drill bit is extracted as well as cooling of the bone in-between intervals which limits the accumulation of heat. However, reducing the length of the drilled interval was found only to be beneficial for temperature reduction using the newly designed drill bit due to the improved cutting geometry. To evaluate possible tissue damage caused by the generated heat increase, cumulative equivalent minutes (CEM43) were calculated and it was found that the combination of small interval length (0.5 mm), high irrigation rate (30 ml/min) and the newly designed drill bit was the only parameter combination which allowed drilling below the time-thermal threshold for tissue damage. In conclusion, an optimized drilling method has been found which might also enable drilling in more delicate procedures such as that performed during minimally invasive robotic cochlear implantation.


Assuntos
Temperatura Alta , Procedimentos Cirúrgicos Robóticos/instrumentação , Tíbia/cirurgia , Animais , Bovinos , Desenho de Equipamento
5.
Med Eng Phys ; 38(10): 1136-8, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27387900

RESUMO

Cutting and drilling operations in bone are involved in many orthopedic and otolaryngological surgeries. The temperature elevation of these procedures is potentially harmful to bone and soft tissue cells. The research on this topic aims therefore at minimizing temperature elevation and finding optimal process parameters. Experimental studies are mostly carried out on ex vivo setups using bovine bone material. For temperature measurements, either thermocouples or infrared cameras are used. Infrared cameras have potential advantages, but the emissivity value of the material has to be known. Literature values are scattered and vary within a wide range. An experimental study was carried out to quantify the emissivity using freshly frozen bovine and human bone, as well as human bone samples which were either fixed with Formalin or Thiel solution. Additionally, different surface finishes were used and emissivity was evaluated at different temperatures. The mean emissivity of bone was determined to be ɛ=0.96±0.01 for temperature elevations up to 60 °C. A slightly higher value of ɛ=0.97±0.01 was found for temperatures around 80 °C. No significant differences for human or bovine bone samples, preparation or fixation techniques were found.


Assuntos
Osso e Ossos/cirurgia , Procedimentos Ortopédicos/efeitos adversos , Temperatura , Animais , Bovinos , Humanos
6.
Ann Biomed Eng ; 44(5): 1576-86, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26358479

RESUMO

Surgical robots have been proposed ex vivo to drill precise holes in the temporal bone for minimally invasive cochlear implantation. The main risk of the procedure is damage of the facial nerve due to mechanical interaction or due to temperature elevation during the drilling process. To evaluate the thermal risk of the drilling process, a simplified model is proposed which aims to enable an assessment of risk posed to the facial nerve for a given set of constant process parameters for different mastoid bone densities. The model uses the bone density distribution along the drilling trajectory in the mastoid bone to calculate a time dependent heat production function at the tip of the drill bit. Using a time dependent moving point source Green's function, the heat equation can be solved at a certain point in space so that the resulting temperatures can be calculated over time. The model was calibrated and initially verified with in vivo temperature data. The data was collected in minimally invasive robotic drilling of 12 holes in four different sheep. The sheep were anesthetized and the temperature elevations were measured with a thermocouple which was inserted in a previously drilled hole next to the planned drilling trajectory. Bone density distributions were extracted from pre-operative CT data by averaging Hounsfield values over the drill bit diameter. Post-operative [Formula: see text]CT data was used to verify the drilling accuracy of the trajectories. The comparison of measured and calculated temperatures shows a very good match for both heating and cooling phases. The average prediction error of the maximum temperature was less than 0.7 °C and the average root mean square error was approximately 0.5 °C. To analyze potential thermal damage, the model was used to calculate temperature profiles and cumulative equivalent minutes at 43 °C at a minimal distance to the facial nerve. For the selected drilling parameters, temperature elevation profiles and cumulative equivalent minutes suggest that thermal elevation of this minimally invasive cochlear implantation surgery may pose a risk to the facial nerve, especially in sclerotic or high density mastoid bones. Optimized drilling parameters need to be evaluated and the model could be used for future risk evaluation.


Assuntos
Densidade Óssea , Cóclea , Implante Coclear , Implantes Cocleares , Processo Mastoide , Procedimentos Cirúrgicos Minimamente Invasivos , Modelos Biológicos , Procedimentos Cirúrgicos Robóticos , Animais , Ovinos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA