RESUMO
Caries lesions during cement repairs are a severe issue, and developing a unique antimicrobial restorative biomaterial can help to reduce necrotic lesion recurrence. As a result, Thymus vulgaris extract was used to biosynthesize copper nanoparticles (TVE-CuNPs) exhibiting different characteristics (TVE). Along with TVE-CuNPs, commercial silver nanoparticles (AgNPs) and metronidazole were combined with glass ionomer cement (GIC) to test its antibacterial efficacy and compressive strength. FTIR, XRD, UV-Vis spectrophotometry, and TEM were applied to characterize the TVE-CuNPs. Additionally, AgNPs and TVE-CuNPs were also combined with metronidazole and GIC. The modified GIC samples were divided into six groups, where groups 1 and 2 included conventional GIC and GIC with 1.5% metromidazole, respectively; group 3 had GIC with 0.5% TVE-CuNPs, while group 4 had 0.5% TVE-CuNPs with metronidazole in 1.5%; group 5 had GIC with 0.5% AgNPs, and group 6 had 0.5% AgNPs with metronidazole at 1.5%. An antimicrobial test was performed against Staphylococcus aureus (S. aureus) and Streptococcus mutans (S. mutans) by the disc diffusion method and the modified direct contact test (MDCT). GIC groups 4 and 6 demonstrated a greater antimicrobial efficiency against the two tested strains than the other groups. In GIC groups 4 and 6, the combination of GIC with two antimicrobial agents, 1.5% metronidazole and 0.5% TVE-CuNPs or AgNPs, enhanced the antimicrobial efficiency when compared to that of the other groups with or without a single agent. GIC group specimens combined with nanosilver and nanocopper had similar mean compressive strengths when compared to the other GIC groups. Finally, the better antimicrobial efficacy of GIC boosted by metronidazole and the tested nanoparticles against the tested strains may be relevant for the future creation of more efficient and modified restorations to reduce dental caries lesions.
RESUMO
In the present study, Zingiber officinale is used for the synthesis of Zingiber officinale capped silver nanoparticles (ZOE-AgNPs) and compares the antimicrobial efficacy and compressive strength of conventional glass ionomer cement (GIC) combined with ZOE-AgNPs, lyophilized miswak, and chlorhexidine diacetate (CHX) against oral microbes. Five groups of the disc-shaped GIC specimens were prepared. Group A: lyophilized miswak and GIC combination, Group B: ZOE-AgNPs and GIC combinations, Group C: CHX and GIC combination, Group D: ZOE-AgNPs + CHX + GIC; Group E: Conventional GIC. Results confirmed the successful formation of ZOE-AgNPs that was monitored by UV-Vis sharp absorption spectra at 415 nm. The X-ray diffractometer (XRD) and transmission electron microscope (TEM) results revealed the formation of ZOE-AgNPs with a mean size 10.5-14.12 nm. The peaks of the Fourier transform infrared spectroscopy (FTIR) were appearing the involvement of ZOE components onto the surface of ZOE-AgNPs which played as bioreducing, and stabilizing agents. At a 24-h, one-week and three-week intervals, Group D showed the significantly highest mean inhibitory zones compared to Group A, Group B, and Group C. At microbe-level comparison, Streptococcus mutans and Staphylococcus aureus were inhibited significantly by all the specimens tested except group E when compared to Candida albicans. Group D specimens showed slightly higher (45.8 ± 5.4) mean compressive strength in comparison with other groups. The combination of GIC with ZOE-AgNPs and chlorhexidine together enhanced its antimicrobial efficacy and compressive strength compared to GIC with ZOE-AgNPs or lyophilized miswak or chlorhexidine combination alone. The present study revealed that The combination of GIC with active components of ZOE-AgNPs and chlorhexidine paves the way to lead its effective nano-dental materials applications.
Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Clorexidina/farmacologia , Cimentos de Ionômeros de Vidro/farmacologia , Nanopartículas Metálicas/administração & dosagem , Salvadoraceae/química , Prata/química , Antibacterianos/química , Zingiber officinale/química , Teste de Materiais , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologiaRESUMO
OBJECTIVE: Systematic review and meta-analysis are of a great tool in assessment of malocclusion, which is major public health concern. This study aims to explore the prevalence of malocclusion among the children of the Kingdom of Saudi Arabia through a meta-analysis and systematic review. MATERIALS AND METHODS: Registered with PROSPERO as CRD42020198427, an authentic and global scale database search using relevant MeSH (Medical Subject Headings) terms was performed. Literature search and articles screening done following PRISMA guidelines.For the dichotomous variables, 95% confidence intervals (CIs) were set for statistical data analysis. The heterogeneity index between the studies was determined using indices Tau2, Chi2, df and I2 and Test for overall effect as Z. RESULTS: A total of 7930 candidates were reported to have either one of the three malocclusions. Prevalence of Class I, Class II and Class III Malocclusions were found to be 66.51%, 17.70%, 15.79% respectively. Among the small subsample of these candidates, male children with Class I, Class II and Class III Malocclusion were 43.80%, 12.27% and 7.40% respectively whereas female children were 22.07%, 10.93 %, 3.52 % respectively. CONCLUSIONS: According to the 26 studies included in the systematic review, there were 72% of the candidates with malocclusion in Saudi Arabia. Prevalence of Class I, Class II and Class III malocclusion were 66.51%, 17.70%, and 15.79% respectively. In both male and female participants, the prevalence of Class I was the highest followed by class II and III malocclusion.
RESUMO
Dental caries results from the bacterial pathogen Streptococcus mutans (S. mutans) and is the maximum critical reason for caries formation. Consequently, the present study aims to evaluate the antibacterial activity of a newly synthesized nanoantibiotic-Biodentine formulation. The silver nanoparticles (ROE-AgNPs) were biosynthesized from the usage of Rosmarinus officinalis L. extract (ROE) and conjugated with cefuroxime to form Cefuroxime-ROE-AgNPs. Using Biodentine™ (BIOD), five groups of dental materials were prepared, in which Group A included conventional BIOD, Group B included BIOD with ROE-AgNPs, Groups C and D included BIOD with Cefuroxime-ROE-AgNPs at concentrations of 0.5% and 1.5% cefuroxime, respectively, and Group E included BIOD with 1.5% cefuroxime. The synthesized ROE-AgNPs or Cefuroxime-ROE-AgNPs were characterized for conjugating efficiency, morphology, particle size, and in vitro release. Minimum inhibitory concentration (MIC) of the cefuroxime, ROE-AgNPs, and Cefuroxime-ROE-AgNPs were additionally evaluated against cefuroxime resistant S. mutans, which furthered antibacterial efficacy of the five groups of dental materials. The UV-Visible spectrum showed the ROE-AgNPs or Cefuroxime-ROE-AgNPs peaks and their formation displayed through transmission electron microscopy (TEM), X-ray diffraction (XRD) pattern, and Fourier transforms infrared (FTIR) analysis. The end result of Cefuroxime-ROE-AgNPs showed conjugating efficiency up to 79%. Cefuroxime-ROE-AgNPs displayed the highest antibacterial efficacy against S. mutans as compared to cefuroxime or ROE-AgNPs alone. Moreover, the MIC of ROE-AgNPs and Cefuroxime-ROE-AgNPs was detected against S. mutans to be 25 and 8.5 µg/mL, respectively. Consequently, Cefuroxime-ROE-AgNPs displayed that a decrease in the MIC reached to more than three-fold less than MIC of ROE-AgNPs on the tested strain. Moreover, Cefuroxime-ROE-AgNPs/BIOD was employed as a novel dental material that showed maximum antimicrobial activity. Groups C and D of novel materials showed inhibitory zones of 19 and 26 mm, respectively, against S. mutans and showed high antimicrobial rates of 85.78% and 91.17%, respectively. These data reinforce the utility of conjugating cefuroxime with ROE-AgNPs to retrieve its efficiency against resistant S. mutant. Moreover, the nanoantibiotic delivered an advantageous antibacterial effect to BIOD, and this may open the door for future conjugation therapy of dental materials against bacteria that cause dental caries.
Assuntos
Compostos de Cálcio/química , Compostos de Cálcio/farmacologia , Cefuroxima/química , Cefuroxima/farmacologia , Nanopartículas Metálicas/química , Silicatos/química , Silicatos/farmacologia , Prata/química , Streptococcus mutans/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Cárie Dentária/tratamento farmacológico , Testes de Sensibilidade Microbiana/métodos , Tamanho da Partícula , Extratos Vegetais/química , Extratos Vegetais/farmacologiaRESUMO
Dental pathogens lead to chronic diseases like periodontitis, which causes loss of teeth. Here, we examined the plausible antibacterial efficacy of copper nanoparticles (CuNPs) synthesized using Cupressus macrocarpa extract (CME) against periodontitis-causing bacteria. The antimicrobial properties of CME-CuNPs were then assessed against oral microbes (M. luteus. B. subtilis, P. aerioginosa) that cause periodontal disease and were identified using morphological/ biochemical analysis, and 16S-rRNA techniques. The CME-CuNPs were characterized, and accordingly, the peak found at 577 nm using UV-Vis spectrometer showed the formation of stable CME-CuNPs. Also, the results revealed the formation of spherical and oblong monodispersed CME-CuNPs with sizes ranged from 11.3 to 22.4 nm. The FTIR analysis suggested that the CME contains reducing agents that consequently had a role in Cu reduction and CME-CuNP formation. Furthermore, the CME-CuNPs exhibited potent antimicrobial efficacy against different isolates which was superior to the reported values in literature. The antibacterial efficacy of CME-CuNPs on oral bacteria was compared to the synergistic solution of clindamycin with CME-CuNPs. The solution exhibited a superior capacity to prevent bacterial growth. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and fractional inhibitory concentration (FIC) of CME-CuNPs with clindamycin recorded against the selected periodontal disease-causing microorganisms were observed between the range of 2.6-3.6 µg/ml, 4-5 µg/ml and 0.312-0.5, respectively. Finally, the synergistic antimicrobial efficacy exhibited by CME-CuNPs with clindamycin against the tested strains could be useful for the future development of more effective treatments to control dental diseases.
Assuntos
Antibacterianos/farmacologia , Cobre/química , Nanopartículas Metálicas/química , Periodontite/microbiologia , Antibacterianos/química , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Cobre/farmacologia , Cupressus/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Sinergismo Farmacológico , Química Verde , Humanos , Testes de Sensibilidade Microbiana , Extratos Vegetais/químicaRESUMO
Background. The development of dental caries is associated with various microorganisms and secondary caries formation is the main cause of restorations failure. The advice for restorative dental materials that have antimicrobial properties has stimulated the introduction of materials containing different antibacterial agents.Objectives. The present study has been designed to synthesize silver nanoparticles (AgNPs) and incorporate AgNPs and amoxicillin into glass ionomer cement (GIC) to synergize its effect on oral microbes. The effect of the added antimicrobial agents on compressive strength (CS) of GIC was also evaluated.Material and methods. Biosynthesis of AgNPs was done usingCupressus macrocarpaextract and AgNPs were characterized. A total of 120 disc-shaped specimens were prepared and classified into 4 main groups where Group A includes conventional GIC, Groups B and C include GIC with AgNPs or amoxicillin, respectively, while Group D included GIC with both AgNPs and amoxicillin. Each group was tested for the antimicrobial activity against bothStreptococcus mutans(S. mutans) andStaphylococcus aureus(S. aureus). The distribution of biofilm was examined via a scanning electron microscope. The CS of the tested material was measured using a Material Test System.Results. The UV-visible spectrum showed a peak of 429 nm. Transmission electron microscopy, x-ray diffraction pattern and Fourier transform infrared analysis confirmed the formation of AgNPs with spherical to oblong polydispersed particles of diameter in the range of 13.5-25.8 nm. The maximum inhibitory zone was recorded for group D against both tested bacteria with a mean of 29 mm at first 24 h period to 15 mm at three weeks and showed antimicrobial rate 92.2% and 92.56%, against both strains, respectively. Additionally, group D disintegrated the structure ofS. aureusbiofilm and even kill bacteria in the biofilms. The addition of AgNPs and amoxicillin caused an insignificant effect on CS of GIC.Conclusion.TheAgNPs showed a synergistic effect in combination with amoxicillin and GIC dental restorative material against studied microorganisms. The agents can be safely added with minimal effect on the mechanical properties of the original cement.
Assuntos
Amoxicilina/farmacologia , Anti-Infecciosos/química , Cimentos de Ionômeros de Vidro/química , Nanopartículas Metálicas/química , Prata/química , Staphylococcus aureus/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Cupressus/química , Cupressus/metabolismo , Química Verde , Nanopartículas Metálicas/toxicidade , Testes de Sensibilidade Microbiana , Extratos Vegetais/químicaRESUMO
A dental trait in humans can be a valuable diagnostic tool in anthropological studies for classifying and characterizing different ethnic groups. Many studies have attempted to relate the prevalence of dental morphologies with different factors. Several variations, such as variations in the size, number of cusps, and groove pattern, have been observed in the mandibular molars of diverse populations. The morphological features of the occlusal surfaces of the mandibular molars have been described by Gregory and Hellman. To date, no studies have been reported in the literature regarding the frequency and expression of different types of cusps and the occlusal groove patterns in a Saudi Arabian population. The present study aimed to determine the prevalence of different occlusal morphologies (number of cusps and occlusal groove patterns) of the permanent mandibular first and second molar in a Saudi population and to correlate its importance in forensics, if any. The results of this study showed that the most frequent occlusal configurations were the 5-cusp pattern seen in 85% (136 teeth) and the 4-cusp pattern seen in 11% (18 teeth) of the mandibular first molars, bilaterally. Regarding the mandibular second molars, the 4-cusp form was the most common occlusal configuration, seen in 82% (132 teeth), followed by the 5-cusps type, seen in approximately 16% (26 teeth), bilaterally. Statistically significant (P value = 0.001) differences were noted for the permanent mandibular first and second molars between male and female subjects in all cusp and groove patterns ("Y" and "+" patterns). Similarly, significant differences (P value = 0.001) were found between the unilateral and bilateral presence of different cusp and groove patterns, both in the mandibular first and second molars. The present study showed that the groove pattern in the mandibular first molars was very different when compared to other populations. The cusp and groove patterns of the mandibular second molars were similar to those of the East African and Iranian populations. The results of this study may be used in forensics. Thus, the outcomes of this study may be helpful in both anthropological and clinical dental research.
Assuntos
Dente Molar/anatomia & histologia , Adolescente , Adulto , Criança , Dentição Permanente , Feminino , Humanos , Masculino , Mandíbula , Odontometria , Fotografação , Arábia Saudita , Adulto JovemRESUMO
BACKGROUND: Bond strength of adhesive layer can absorb unwanted stresses of polymerization shrinkage in composite resin restorations; increased microshear bond strength can prevent failure of restoration materials, the purpose of this study was to evaluate the effect of adhesive layers on microshear bond strength of nanocomposite resin to dentin. MATERIAL AND METHODS: Two different types of adhesive systems: universal adhesive (ExciTE) and newly developed adhesive (Nano-Bond), and one type of light-cured resin restorative material (Nanocomposite resin) were used in this study. The occlusal surfaces of extracted human molar teeth were ground perpendicular to the long axis of each tooth to expose a flat dentin surface. The adhesives were applied on dentin surfaces (single application or double application). Nanocomposite resin was then placed and light cured for 40 seconds. After 24 hours of immersion in water at 37°C, then subjected to thermocycling before testing, a microshear bond test was carried out. The data were analyzed by a two-way ANOVA. For comparison between groups, Tukey's post-hoc test was used. RESULTS: The mean bond strengths of ExciTE and Nano-Bond adhesives with a single application were 8.8 and 16.6 MPa, respectively. The mean bond strengths of ExciTE and Nano-Bond adhesives with double application were 13.2 and 21.8MPa, respectively. There were no statistically significant differences in microshear bond strengths between the single application of Nano-Bond and the double application of ExciTE adhesives. CONCLUSIONS: Microshear bond strength increased significantly as the applied adhesive layer was doubled. Key words:Adhesive, microshear, bond, strength, nanocomposite.
RESUMO
BACKGROUND: The purpose of this in-vitro study was to examine the effect of incorporating different concentrations of Zirconium oxide-Titanium dioxide (ZrO2-TiO2) nanoparticles, which can have antibacterial properties, on the mechanical properties of an orthodontic adhesive. METHODS: ZrO2-TiO2 (Zirconium oxide, HWNANO, Hongwu International Group Ltd, China) -Titanium dioxide, Nanoshell, USA) nanopowder were incorporated into orthodontic adhesive (Transbond XT, 3 M Unitek, Monrovia, USA) with different concentrations (0.5% weight nonofiller and 1% weight nanofiller). The size of nanoparticle was 70-80 nm for ZrO2 and less than 50 nm for TiO2. For measuring the shear bond strength of the three groups of orthodontic adhesives [Transbond (control), Transbond mixed with 0.5% weight ZrO2-TiO2, and Transbond mixed with 1% weight ZrO2-TiO2], 30 freshly extracted human first premolars were used and bonded with stainless steel metal brackets (Dentaurum®, Discovery®, Deutschland), using the 3 orthodontic adhesives and 3 M Unitek; Transbond TM Plus Self-Etching Primer (10 samples in each group). The recorded values of compressive strength and tensile strength (measured separately on 10 samples of orthodontic adhesives (add the 3 D size of sample, light cured for 40 s on both sides) of each orthodontic adhesives), as well as the shear bond strength in Mega Pascal unit (MPa) were collected and exposed to one-way analysis of variance (ANOVA) and Tukey's post-hoc tests. RESULTS: orthodontic adhesive with 1% weight ZrO2-TiO2 showed the highest mean compressive (73.42 ± 1.55 MPa, p: 0.003, F: 12.74), tensile strength (8.65 ± 0.74 MPa, p: 0.001, F: 68.20), and shear bond strength (20.05 ± 0.2 MPa, p: 0.001, F: 0.17). CONCLUSIONS: Adding ZrO2-TiO2 nanoparticle to orthodontic adhesive increased compressive strength, tensile strength, and shear bond strength in vitro, but in vivo studies and randomized clinical trials are needed to validate the present findings.
Assuntos
Cimentos Dentários/química , Titânio/química , Zircônio/química , Análise do Estresse Dentário , Técnicas In Vitro , Teste de Materiais , Nanopartículas , Cimentos de Resina , Propriedades de SuperfícieRESUMO
BACKGROUND: The aim of the present study was to compare the cervical vertebra maturation stages method and dental maturity using tooth calcification stages. METHODS: The current study comprised of 405 subjects selected from orthodontic patients of Saudi origin coming to clinics of the specialized dental centers in western region of Saudi Arabia. Dental age was assessed according to the developmental stages of upper and lower third molars and skeletal maturation according to the cervical vertebrae maturation stage method. Statistical analysis was done using Kruskal-Wallis H, Mann-Whitney U test, Chi-Square test; t-test and Spearman correlation coefficient for inter group comparison. RESULTS: The females were younger than males in all cervical stages. The CS1-CS2 show the period before the peak of growth, during CS3-CS5 it's the pubertal growth spurt and CS6 is the period after the peak of the growth. The mean age and standard deviation for cervical stages of CS2, CS3 and CS4 were 12.09 ±1.72 years, 13.19 ±1.62 and 14.88 ±1.52 respectively. The Spearman correlation coefficients between cervical vertebrae and dental maturation were between 0.166 and 0.612, 0.243 and 0.832 for both sexes for upper and lower third molars. The significance levels for all coefficients were equal at 0.01 and 0.05. CONCLUSION: The results of this study showed that the skeletal maturity increased with the increase in dental ages for both genders. An early rate of skeletal maturation stage was observed in females. This study needs further analysis using a larger sample covering the entire dentition.
RESUMO
OBJECTIVE: This study was conducted to evaluate the effect of incorporation of silica particles with different concentrations on some properties of resin-modified glass ionomer cement (RMGIC): Microleakage, compressive strength, tensile strength, water sorption, and solubility. MATERIALS AND METHODS: Silica particle was incorporated into RMGIC powder to study its effects, one type of RMGIC (Type II visible light-cured) and three concentrations of silica particles (0.06, 0.08, and 0.1% weight) were used. One hundred and twenty specimens were fabricated for measuring microleakage, compressive strength, tensile strength, water sorption, and solubility. STATISTICAL ANALYSIS: One-way analysis of variance and Tukey's tests were used for measuring significance between means where P ≤ 0.05. RESULTS: RMGIC specimens without any additives showed significantly highest microleakage and lowest compressive and tensile strengths. CONCLUSION: Silica particles added to RMGIC have the potential as a reliable restorative material with increased compressive strength, tensile strength, and water sorption but decreased microleakage and water solubility.
RESUMO
In the present report, two techniques of space closure; two-step anterior teeth retraction (TSR) and en masse retraction (ER) were used in two adult patients who had bimaxillary protrusion and were treated with four premolar extractions and fixed orthodontic appliance therapy. Both patients had a Class I dental malocclusion and the same chief complaint, which is protrusive lips. Anterior teeth were retracted by two-step retraction; canine sliding followed by retraction of incisors with T-loop archwire in the first patient and by en masse retraction using Beta titanium alloy T-loop archwire in the second case. At the end of treatment, good balance and harmony of lips was achieved with maintenance of Class I relationships. The outcome of treatment was similar in the two patients with similar anchorage control. ER can be an acceptable alternative to the TSR during space closure since it is esthetically more acceptable. However, it requires accurate bending and positioning of the T-loop.