Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Microbiol Spectr ; 10(5): e0150422, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36005449

RESUMO

Cryptococcus neoformans is an opportunistic fungal pathogen known for its remarkable ability to infect and subvert phagocytes. This ability provides survival and persistence within the host and relies on phenotypic plasticity. The viable but nonculturable (VBNC) phenotype was recently described in C. neoformans, whose study is promising in understanding the pathophysiology of cryptococcosis. The use of fluorescent strains is improving host interaction research, but it is still underexploited. Here, we fused histone H3 or the poly(A) binding protein (Pab) to enhanced green fluorescent protein (eGFP) or mCherry, obtaining a set of C. neoformans transformants with different colors, patterns of fluorescence, and selective markers (hygromycin B resistance [Hygr] or neomycin resistance [Neor]). We validated their similarity to the parental strain in the stress response, the expression of virulence-related phenotypes, mating, virulence in Galleria mellonella, and survival within murine macrophages. PAB-GFP, the brightest transformant, was successfully applied for the analysis of phagocytosis by flow cytometry and fluorescence microscopy. Moreover, we demonstrated that an engineered fluorescent strain of C. neoformans was able to generate VBNC cells. GFP-tagged Pab1, a key regulator of the stress response, evidenced nuclear retention of Pab1 and the assembly of cytoplasmic stress granules, unveiling posttranscriptional mechanisms associated with dormant C. neoformans cells. Our results support that the PAB-GFP strain is a useful tool for research on C. neoformans. IMPORTANCE Cryptococcus neoformans is a human-pathogenic yeast that can undergo a dormant state and is responsible for over 180,000 deaths annually worldwide. We engineered a set of fluorescent transformants to aid in research on C. neoformans. A mutant with GFP-tagged Pab1 improved fluorescence-based techniques used in host interaction studies. Moreover, this mutant induced a viable but nonculturable phenotype and uncovered posttranscriptional mechanisms associated with dormant C. neoformans. The experimental use of fluorescent mutants may shed light on C. neoformans-host interactions and fungal biology, including dormant phenotypes.


Assuntos
Criptococose , Cryptococcus neoformans , Camundongos , Humanos , Animais , Cryptococcus neoformans/genética , Histonas , Higromicina B , Interações Hospedeiro-Patógeno , Neomicina , Biologia
2.
J Fungi (Basel) ; 8(5)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35628757

RESUMO

Paracoccidioidomycosis (PCM) is the most prevalent systemic mycosis in Brazil. The disease is caused by dimorphic fungi nested within the Paracoccidioides genus. We described 106 PCM cases (47.1 cases/year) at the Tropical Diseases Public Hospital of Tocantins State. PCM was prevalent in males and rural workers over 50 years; the chronic pulmonary form predominated in 67% of cases. The male-to-female ratio was 2.65:1, with more women affected than other endemic regions of Brazil. Urban or indoor activities were reported in women and are ascribed to disease urbanization. qPCR-based assays confirmed the identification of Paracoccidioides DNA in 37 biological specimens. Paracoccidioides sp. DNA was found in 53% of the environmental samples, suggesting autochthonous infections. Therefore, the Tocantins-Araguaia basin must be considered a novel hyperendemic area of PCM in Brazil, reinforcing the importance of including PCM as a notifiable disease, requiring specific diagnosis and health measures.

3.
Transgenic Res ; 30(4): 551-584, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33970411

RESUMO

Genome editing in agriculture and food is leading to new, improved crops and other products. Depending on the regulatory approach taken in each country or region, commercialization of these crops and products may or may not require approval from the respective regulatory authorities. This paper describes the regulatory landscape governing genome edited agriculture and food products in a selection of countries and regions.


Assuntos
Biotecnologia/legislação & jurisprudência , Produtos Agrícolas/genética , Alimentos Geneticamente Modificados/normas , Edição de Genes , Genoma de Planta , Regulamentação Governamental , Plantas Geneticamente Modificadas/genética , Saúde Global , Humanos
4.
Fungal Genet Biol ; 140: 103368, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32201128

RESUMO

Ergosterol is the most important membrane sterol in fungal cells and a component not found in the membranes of human cells. We identified the ERG6 gene in the AIDS-associated fungal pathogen, Cryptococcus neoformans, encoding the sterol C-24 methyltransferase of fungal ergosterol biosynthesis. In this work, we have explored its relationship with high-temperature growth and virulence of C. neoformans by the construction of a loss-of-function mutant. In contrast to other genes involved in ergosterol biosynthesis, C. neoformans ERG6 is not essential for growth under permissive conditions in vitro. However, the erg6 mutant displayed impaired thermotolerance and increased susceptibility to osmotic and oxidative stress, as well as to different antifungal drugs. Total lipid analysis demonstrated a decrease in the erg6Δ strain membrane ergosterol content. In addition, this mutant strain was avirulent in an invertebrate model of C. neoformans infection. C. neoformans Erg6 was cyto-localized in the endoplasmic reticulum and Golgi complex. Our results demonstrate that Erg6 is crucial for growth at high temperature and virulence, likely due to its effects on C. neoformans membrane integrity and dynamics. These pathogen-focused investigations into ergosterol biosynthetic pathway components reinforce the multiple roles of ergosterol in the response of diverse fungal species to alterations in the environment, especially that of the infected host. These studies open perspectives to understand the participation of ergosterol in mechanism of resistance to azole and polyene drugs. Observed synergistic growth defects with co-inhibition of Erg6 and other components of the ergosterol biosynthesis pathway suggests novel approaches to treatment in human fungal infections.


Assuntos
Criptococose/genética , Cryptococcus neoformans/genética , Ergosterol/biossíntese , Metiltransferases/genética , Antifúngicos/farmacologia , Azóis/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Criptococose/tratamento farmacológico , Criptococose/microbiologia , Cryptococcus neoformans/patogenicidade , Retículo Endoplasmático/efeitos dos fármacos , Ergosterol/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Humanos , Mutação/efeitos dos fármacos , Virulência/genética
5.
Front Microbiol ; 10: 284, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30858833

RESUMO

The pathogenic clade of the Sporothrix genus comprises the etiological agents of sporotrichosis, a worldwide emergent disease. Despite the growing understanding of their successful pathogen traits, there is little information on genome sizes and ploidy within the genus. Therefore, in this work, we evaluated the ploidy of four species of the Sporothrix genus, specifically Sporothrix brasiliensis, Sporothrix schenckii, Sporothrix globosa, and Sporothrix pallida. Through cell cycle analysis of the yeast-phase cells, we showed that the DNA content of G0/G1 cells was similar to the genome size determined by whole genome sequencing. Moreover, ploidy of S. schenckii, S. brasiliensis, and S. pallida that was determined by allele composition using next-generation sequencing (NGS) data is consistent with monomorphic positions at each allele. These data show that the analyzed strains of Sporothrix are haploid, or at least aneuploid, thereby laying the foundation for the development of a molecular toolbox for Sporothrix spp.

6.
Microbiol Res ; 207: 269-279, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29458863

RESUMO

Fonsecaea pedrosoi, a melanized fungal pathogen that causes Chromoblastomycosis, a human disease with a worldwide distribution. Biolistic is a widely used technique for direct delivery of genetic material into intact cells by particles bombardment. Another well-established transformation method is Agrobacterium-mediated transformation (ATMT), which involves the transfer of a T-DNA from the bacterium to the target cells. In F. pedrosoi there are no reports of established protocols for genetic transformation, which require optimization of physical and biological parameters. In this work, intact conidia of F. pedrosoi were particle bombarded and subjected to ATMT. In addition, we proposed hygromycin B, nourseothricin and neomycin as dominant selective markers for F. pedrosoi and vectors were constructed. We tested two parameters for biolistic: the distance of the particles to the target cells and time of cells recovery in nonselective medium. The biolistic efficiency was 37 transformants/µg of pFpHYG, and 45 transformants/µg of pAN7.1. Transformants expressing GFP were successfully obtained by biolistic. A co-culture ratio of 10: 1 (bacterium: conidia) and co-incubation time of 72 h yielded the largest number of transformants after ATMT. Southern blot analysis showed the number of foreign DNA insertion into the genome is dependent upon the plasmid used to generate the mutants. This work describes for the first time two efficient methods for genetic modification of Fonsecaea and these results open new avenues to better understand the biology and pathogenicity of the main causal agent of this neglected disease.


Assuntos
Agrobacterium tumefaciens/genética , Ascomicetos/genética , Biolística/métodos , DNA Bacteriano/genética , DNA Fúngico/genética , Transformação Genética/genética , Ascomicetos/classificação , Cromoblastomicose/microbiologia , Proteínas de Fluorescência Verde/genética , Humanos , Higromicina B/análise , Neomicina/análise , Estreptotricinas/análise
7.
Methods Mol Biol ; 1625: 85-96, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28584985

RESUMO

The conventional treatment for fungal diseases usually shows long periods of therapy and the high frequency of relapses and sequels. New strategies of the treatment are necessary. We have shown that the Mycobacterium leprae HSP65 gene can be successfully used as therapy against murine Paracoccidioidomycosis (PCM). Here, we described the methodology of DNAhsp65 immunotherapy in mice infected with the dimorphic fungus Paracoccidioides brasiliensis, one of PCM agent, evaluating cytokines levels, fungal burden, and lung injury. Our results provide a new prospective on the immunotherapy of mycosis.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Chaperonina 60/imunologia , Vacinas Fúngicas/imunologia , Paracoccidioidomicose/imunologia , Vacinas de DNA/imunologia , Animais , Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Chaperonina 60/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Vacinas Fúngicas/genética , Imunoterapia/métodos , Ativação Linfocitária/imunologia , Camundongos , Óxido Nítrico/metabolismo , Paracoccidioidomicose/microbiologia , Paracoccidioidomicose/prevenção & controle , Paracoccidioidomicose/terapia , Plasmídeos/genética , Baço/imunologia , Baço/metabolismo , Baço/patologia , Vacinas de DNA/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-28559266

RESUMO

Fungal Candida species are commensals present in the mammalian skin and mucous membranes. Candida spp. are capable of breaching the epithelial barrier of immunocompromised patients with neutrophil and cell-mediated immune dysfunctions and can also disseminate to multiple organs through the bloodstream. Here we examined the action of innate defense regulator 1018 (IDR-1018), a 12-amino-acid-residue peptide derived from bovine bactenecin (Bac2A): IDR-1018 showed weak antifungal and antibiofilm activity against a Candida albicans laboratory strain (ATCC 10231) and a clinical isolate (CI) (MICs of 32 and 64 µg · ml-1, respectively), while 8-fold lower concentrations led to dissolution of the fungal cells from preformed biofilms. IDR-1018 at 128 µg · ml-1 was not hemolytic when tested against murine red blood cells and also has not shown a cytotoxic effect on murine monocyte RAW 264.7 and primary murine macrophage cells at the tested concentrations. IDR-1018 modulated the cytokine profile during challenge of murine bone marrow-derived macrophages with heat-killed C. albicans (HKCA) antigens by increasing monocyte chemoattractant protein 1 (MCP-1) and interleukin-10 (IL-10) levels, while suppressing tumor necrosis factor alpha (TNF-α), IL-1ß, IL-6, and IL-12 levels. Mice treated with IDR-1018 at 10 mg · kg-1 of body weight had an increased survival rate in the candidemia model compared with phosphate-buffered saline (PBS)-treated mice, together with a diminished kidney fungal burden. Thus, IDR-1018 was able to protect against murine experimental candidemia and has the potential as an adjunctive therapy.


Assuntos
Antifúngicos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candidemia/tratamento farmacológico , Candidemia/prevenção & controle , Fatores Imunológicos/uso terapêutico , Animais , Candida albicans/imunologia , Candida albicans/isolamento & purificação , Linhagem Celular , Quimiocina CCL2/imunologia , Modelos Animais de Doenças , Interleucina-10/imunologia , Subunidade p35 da Interleucina-12/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo
9.
Mem Inst Oswaldo Cruz ; 106(2): 220-6, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21537684

RESUMO

The CTLA-4 protein is expressed in activated T cells and plays an essential role in the immune response through its regulatory effect on T cell activation. Polymorphisms of the CTLA-4 gene have been correlated with autoimmune, neoplastic and infectious illnesses. This work aimed to verify possible associations between single nucleotide polymorphisms (SNPs) in CTLA-4, -318C/T in the promoter and +49A/G in exon 1 and paracoccidioidomycosis (PCM) caused by Paracoccidioides brasiliensis. For this purpose, 66 chronic form PCM patients and 76 healthy controls had their allele, genotype and haplotype frequencies determined. The genetic admixture structure of the patients and controls was evaluated to eliminate ancestral bias. The comparison of frequencies indicated no significant differences between patients and controls that could link the SNPs to PCM. Groups were admixture matched with no difference observed in population ancestry inference, indicating that the absence of association between CTLA-4 polymorphisms and PCM could not be attributed to ancestral bias. This study showed that there was no association between the CTLA-4 SNPs -318 and +49 and the resistance or susceptibility to PCM.


Assuntos
Antígenos CD/genética , Predisposição Genética para Doença , Paracoccidioidomicose/genética , Polimorfismo de Nucleotídeo Único/genética , Adolescente , Adulto , Idoso , Antígeno CTLA-4 , Estudos de Casos e Controles , Doença Crônica , Feminino , Frequência do Gene , Genótipo , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
J Nanosci Nanotechnol ; 11(3): 2308-14, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21449386

RESUMO

Itraconazole (ITZ) is a drug used to treat various fungal infections and may cause side effects. The aim of this study was to develop and evaluate the in vitro activity of DMSA-PLGA nanoparticles loaded with ITZ against Paracoccidioides brasiliensis, as well as their cytotoxicity. Nanoparticles were prepared using the emulsification-evaporation technique and characterized by their encapsulation efficiency, morphology (TEM), size (Nanosight) and charge (zeta potential). Antifungal efficacy in P. brasiliensis was determined by minimal inhibition concentration (MIC), and cytotoxicity using MTT assay. ITZ was effectively incorporated in the PLGA-DMSA nanoparticles with a loading efficiency of 72.8 +/- 3.50%. The shape was round with a solid polymeric structure, and a size distribution of 174 +/- 86 nm (Average +/- SD). The particles were negatively charged. ITZ-NANO presented antifungal inhibition (MIC = 6.25 ug/mL) against P. brasiliensis and showed lower in vitro cytotoxicity than free drug (ITZ).


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Itraconazol/administração & dosagem , Itraconazol/toxicidade , Ácido Láctico/química , Nanocápsulas/química , Paracoccidioides/efeitos dos fármacos , Ácido Poliglicólico/química , Succímero/química , Animais , Antifúngicos/administração & dosagem , Antifúngicos/química , Antifúngicos/toxicidade , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Itraconazol/química , Camundongos , Nanocápsulas/ultraestrutura , Paracoccidioides/citologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
11.
Mem. Inst. Oswaldo Cruz ; 106(2): 220-226, Mar. 2011. ilus, tab
Artigo em Inglês | LILACS | ID: lil-583949

RESUMO

The CTLA-4 protein is expressed in activated T cells and plays an essential role in the immune response through its regulatory effect on T cell activation. Polymorphisms of the CTLA-4 gene have been correlated with autoimmune, neoplastic and infectious illnesses. This work aimed to verify possible associations between single nucleotide polymorphisms (SNPs) in CTLA-4, -318C/T in the promoter and +49A/G in exon 1 and paracoccidioidomycosis (PCM) caused by Paracoccidioides brasiliensis. For this purpose, 66 chronic form PCM patients and 76 healthy controls had their allele, genotype and haplotype frequencies determined. The genetic admixture structure of the patients and controls was evaluated to eliminate ancestral bias. The comparison of frequencies indicated no significant differences between patients and controls that could link the SNPs to PCM. Groups were admixture matched with no difference observed in population ancestry inference, indicating that the absence of association between CTLA-4 polymorphisms and PCM could not be attributed to ancestral bias. This study showed that there was no association between the CTLA-4 SNPs -318 and +49 and the resistance or susceptibility to PCM.


Assuntos
Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Antígenos CD , Predisposição Genética para Doença , Paracoccidioidomicose , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Doença Crônica , Frequência do Gene , Genótipo , Haplótipos
12.
BMC Genomics ; 12: 75, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21272313

RESUMO

BACKGROUND: The prevalence of invasive fungal infections (IFIs) has increased steadily worldwide in the last few decades. Particularly, there has been a global rise in the number of infections among immunosuppressed people. These patients present severe clinical forms of the infections, which are commonly fatal, and they are more susceptible to opportunistic fungal infections than non-immunocompromised people. IFIs have historically been associated with high morbidity and mortality, partly because of the limitations of available antifungal therapies, including side effects, toxicities, drug interactions and antifungal resistance. Thus, the search for alternative therapies and/or the development of more specific drugs is a challenge that needs to be met. Genomics has created new ways of examining genes, which open new strategies for drug development and control of human diseases. RESULTS: In silico analyses and manual mining selected initially 57 potential drug targets, based on 55 genes experimentally confirmed as essential for Candida albicans or Aspergillus fumigatus and other 2 genes (kre2 and erg6) relevant for fungal survival within the host. Orthologs for those 57 potential targets were also identified in eight human fungal pathogens (C. albicans, A. fumigatus, Blastomyces dermatitidis, Paracoccidioides brasiliensis, Paracoccidioides lutzii, Coccidioides immitis, Cryptococcus neoformans and Histoplasma capsulatum). Of those, 10 genes were present in all pathogenic fungi analyzed and absent in the human genome. We focused on four candidates: trr1 that encodes for thioredoxin reductase, rim8 that encodes for a protein involved in the proteolytic activation of a transcriptional factor in response to alkaline pH, kre2 that encodes for α-1,2-mannosyltransferase and erg6 that encodes for Δ(24)-sterol C-methyltransferase. CONCLUSIONS: Our data show that the comparative genomics analysis of eight fungal pathogens enabled the identification of four new potential drug targets. The preferred profile for fungal targets includes proteins conserved among fungi, but absent in the human genome. These characteristics potentially minimize toxic side effects exerted by pharmacological inhibition of the cellular targets. From this first step of post-genomic analysis, we obtained information relevant to future new drug development.


Assuntos
Proteínas Fúngicas/genética , Genômica/métodos , Sequência de Aminoácidos , Aspergillus fumigatus/classificação , Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidade , Candida albicans/classificação , Candida albicans/genética , Candida albicans/patogenicidade , Proteínas Fúngicas/química , Humanos , Dados de Sequência Molecular , Filogenia , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos
13.
Cell Transplant ; 19(8): 1047-54, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20412635

RESUMO

Recombinant proteins are an important tool for research and therapeutic applications. Therapeutic proteins have been delivered to several cell types and tissues and might be used to improve the outcome of the cell transplantation. Recombinant proteins are propagated in bacteria, which will contaminate them with the lypopolysacharide endotoxin found in the outer bacterial membrane. Endotoxin could interfere with in vitro biological assays and is the major pathological factor, which must be removed or inactivated before in vivo administration. Here we describe a one-step protocol in which the endotoxin activity on recombinant proteins is remarkably reduced by transient exposure to acidic conditions. Maximum endotoxin deactivation occurs at acidic pH below their respective isoelectric point (pI). This method does not require additional protein purification or separation of the protein from the endotoxin fraction. The endotoxin level was measured both in vitro and in vivo. For in vitro assessment we have utilized Limulus Amebocyte Lysate method for in vivo the pyrogenic test. We have tested the above-mentioned method with five different recombinant proteins, including a monoclonal antibody clone 5c8 against CD154 produced by hybridomas. More than 99% of endotoxin was deactivated in all of the proteins; the recovery of the protein after deactivation varied between maximum 72.9% and minimum 46.8%. The anti-CD154 clone 5c8 activity remained unchanged as verified by the measurement of binding capability to activated lymphocytes. Furthermore, the effectiveness of this method was not significantly altered by urea, commonly used in protein purification. This procedure provides a simple and cost-efficient way to reduce the endotoxin activity in antibodies and recombinant proteins.


Assuntos
Endotoxinas/química , Proteínas Recombinantes/isolamento & purificação , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Ureia/química
14.
Br J Pharmacol ; 159(5): 1126-32, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20136827

RESUMO

BACKGROUND AND PURPOSE: The present study reports on the preparation and testing of a sustained delivery system for the immunomodulatory peptide P10 aimed at reducing the in vivo degradation of the peptide and the amount required to elicit a protective immune response against paracoccidioidomycosis. EXPERIMENTAL APPROACH: BALB/c mice were infected with the yeast Paracoccidioides brasiliensis to mimic the chronic form of paracoccidioidomycosis. The animals were treated daily with sulfamethoxazole/trimethoprim alone or combined with peptide P10, either emulsified in Freund's adjuvant or entrapped in poly(lactic acid-glycolic acid) (PLGA) nanoparticles at different concentrations (1 microg, 5 microg, 10 microg, 20 microg or 40 microg.50 microL(-1)). Therapeutic efficacy was assessed as fungal burden in tissues and the immune response by quantitative determination of cytokines. KEY RESULTS: Animals given combined chemotherapy and P10 nanotherapy presented a marked reduction of fungal load in the lungs, compared with the non-treated animals. After 30 days of treatment, P10 entrapped within PLGA (1 microg.50 microL(-1)) was more effective than 'free' P10 emulsified in Freund's adjuvant (20 microg.50 microL(-1)), as an adjuvant to chemotherapy. After treatment for 90 days, the higher doses of P10 entrapped within PLGA (5 or 10 microg.50 microL(-1)) were most effective. Treatment with P10 emulsified in Freund's adjuvant (20 microg.50 microL(-1)) or P10 entrapped within PLGA (1 microg.50 microL(-1)) were accompanied by high levels of interferon-gamma in lung. CONCLUSIONS AND IMPLICATIONS: Combination of sulfamethoxazole/trimethoprim with the P10 peptide entrapped within PLGA demonstrated increased therapeutic efficacy against paracoccidioidomycosis. P10 incorporation into PLGA nanoparticles dramatically reduced the peptide amount necessary to elicit a protective effect.


Assuntos
Glicoproteínas/farmacologia , Ácido Láctico/química , Nanopartículas , Paracoccidioidomicose/tratamento farmacológico , Fragmentos de Peptídeos/farmacologia , Ácido Poliglicólico/química , Animais , Anti-Infecciosos/uso terapêutico , Preparações de Ação Retardada , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Portadores de Fármacos/química , Quimioterapia Combinada , Adjuvante de Freund/química , Glicoproteínas/administração & dosagem , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Paracoccidioides/imunologia , Paracoccidioidomicose/imunologia , Fragmentos de Peptídeos/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico
15.
Vaccine ; 28(6): 1528-34, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-20045500

RESUMO

The conventional treatment for paracoccidioidomycosis, the most prevalent mycosis in Latin America, involves long periods of therapy resulting in sequels and high frequency of relapses. The search for new alternatives of treatment is necessary. Previously, we have demonstrated that the hsp65 gene from Mycobacterium leprae shows prophylactic effects against murine paracoccidioidomycosis. Here, we tested the DNAhsp65 immunotherapy in BALB/c mice infected with Paracoccidioides brasiliensis, the agent of paracoccidioidomycosis. We observed an increase of Th1 cytokines accompanied by a reduction in fungal burden and pulmonary injury. These results provide new prospects for immunotherapy of paracoccidioidomycosis and other mycoses.


Assuntos
Proteínas de Bactérias/imunologia , Chaperonina 60/imunologia , Imunoterapia/métodos , Mycobacterium leprae/imunologia , Paracoccidioidomicose/prevenção & controle , Vacinas de DNA/imunologia , Animais , Proteínas de Bactérias/genética , Chaperonina 60/genética , Citocinas/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium leprae/genética , Paracoccidioides/imunologia , Vacinas de DNA/administração & dosagem
16.
Mol Phylogenet Evol ; 52(2): 273-83, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19376249

RESUMO

Paracoccidioidomycosis (PCM) is a systemic disease endemic to most of Latin America, with greatest impact in rural areas. The taxonomic status of one of the best studied Paracoccidioides isolates (Pb01) as P. brasiliensis remains unresolved due to its genomic differences from the other three previously described phylogenetic species (S1, PS2 and PS3; Carrero et al., 2008. Fungal Genet. Biol. 45, 605). Using the genealogic concordance method of phylogenetic species recognition (GCPSR) via maximum parsimony and Bayesian analysis, we identified a clade of 17 genotypically similar isolates, including Pb01, which are distinct from the S1/PS2/P3 clade. Consistent with GCPSR, this "Pb01-like" group can be considered a new phylogenetic species, since it is strongly supported by all independent and concatenated genealogies. "Pb01-like" species exhibit great sequence and morphological divergence from the S1/PS2/PS3 species clade, and we estimate that these groups last shared a common ancestor approximately 32 million years ago. In addition, recombination analysis revealed independent events inside both main groups suggesting reproductive isolation. Consequently, we recommend the formal description of the "Pb01-like" cluster as the new species Paracoccidioides lutzii, a tribute to Adolpho Lutz, discoverer of P. brasiliensis in 1908.


Assuntos
Evolução Molecular , Especiação Genética , Paracoccidioides/genética , Filogenia , Teorema de Bayes , DNA Fúngico/genética , Marcadores Genéticos , Paracoccidioides/classificação , Polimorfismo Genético , Recombinação Genética , Alinhamento de Sequência , Análise de Sequência de DNA
17.
J Antimicrob Chemother ; 63(3): 526-33, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19151037

RESUMO

OBJECTIVES: The present study reports on the preparation and testing of a desoxycholate amphotericin B (D-AMB) sustained delivery system based on poly(lactic-co-glycolic acid) (PLGA) and dimercaptosuccinic acid (DMSA) polymeric blends (Nano-D-AMB) aimed at reducing the number of AMB administrations required to treat mycosis. METHODS: BALB/c mice were infected with the yeast Paracoccidioides brasiliensis intravenously to mimic the chronic form of paracoccidioidomycosis. At 30 days post-infection, the animals were treated with Nano-D-AMB [6 mg/kg of encapsulated D-AMB, intraperitoneally (ip), interval of 72 h] or D-AMB (2 mg/kg, ip, interval of 24 h). Drug efficacy was investigated by the fungal burden recovery from tissues. Toxicity was assessed by renal and hepatic biochemical parameters, physical appearance of the animals and haematological investigation. The control groups used were non-infected and the infected mice mock treated with PBS. RESULTS: Nano-D-AMB presented results comparable to free D-AMB, with a marked antifungal efficacy. The Nano-D-AMB-treated group presented lower loss of body weight and absence of stress sign (piloerection and hypotrichosis) observed after D-AMB treatment. No renal [blood urea nitrogen (BUN), creatinine] or hepatic (pyruvic and oxalacetic glutamic transaminases) biochemical abnormalities were found. The micronucleus assay showed no significant differences in both the micronucleus frequency and percentage of polychromatic erythrocytes for Nano-D-AMB, indicating the absence of genotoxicity and cytotoxic effects. CONCLUSIONS: The D-AMB-coated PLGA-DMSA nanoparticle showed antifungal efficacy, fewer undesirable effects and a favourable extended dosing interval. Nano-D-AMB comprises an AMB formulation able to lessen the number of drug administrations. Further studies would elucidate whether Nano-D-AMB would be useful to treat systemic fungal infections such as paracoccidioidomycosis, candidiasis, aspergillosis and cryptococcosis.


Assuntos
Anfotericina B/uso terapêutico , Ácido Desoxicólico/uso terapêutico , Ácido Láctico/uso terapêutico , Nanopartículas/uso terapêutico , Paracoccidioides/efeitos dos fármacos , Paracoccidioidomicose/tratamento farmacológico , Ácido Poliglicólico/uso terapêutico , Succímero/uso terapêutico , Anfotericina B/administração & dosagem , Anfotericina B/efeitos adversos , Animais , Peso Corporal , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Medula Óssea/fisiologia , Contagem de Colônia Microbiana , Ácido Desoxicólico/administração & dosagem , Ácido Desoxicólico/efeitos adversos , Combinação de Medicamentos , Feminino , Rim/efeitos dos fármacos , Rim/fisiologia , Ácido Láctico/administração & dosagem , Ácido Láctico/efeitos adversos , Fígado/efeitos dos fármacos , Fígado/microbiologia , Fígado/fisiologia , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Nanopartículas/efeitos adversos , Ácido Poliglicólico/administração & dosagem , Ácido Poliglicólico/efeitos adversos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Succímero/administração & dosagem , Succímero/efeitos adversos , Resultado do Tratamento
18.
Vaccine ; 27(4): 606-13, 2009 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19028537

RESUMO

Heat-shock proteins are molecules with extensive data showing their potential as immunomodulators of different types of diseases. The gene of HSP65 from Mycobacterium leprae has shown prophylactic and immunotherapeutic effects against a broad arrays of experimental models including tuberculosis, leishmaniasis, arthritis and diabetes. With this in mind, we tested the DNAhsp65 vaccine using an experimental model of Paraccocidiodomycosis, an important endemic mycosis in Latin America. The intramuscular immunization with DNAhsp65 induced, in BALB/c mice, an increase of Th1-levels cytokines and a reduction of fungal burdens resulted in a marked reduction of collagen and lung remodeling. DNAhsp65 may be an attractive candidate for prevention, therapy and as an adjuvant for mycosis treatment.


Assuntos
Proteínas de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Chaperoninas/imunologia , Paracoccidioides/imunologia , Paracoccidioidomicose/prevenção & controle , Vacinas de DNA/imunologia , Animais , Vacinas Bacterianas/administração & dosagem , Chaperonina 60 , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium leprae/genética , Mycobacterium leprae/metabolismo , Paracoccidioidomicose/imunologia , Vacinação , Vacinas de DNA/genética
19.
BMC Microbiol ; 8: 158, 2008 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-18808717

RESUMO

BACKGROUND: Paracoccidioides brasiliensis is a dimorphic fungus that causes the most prevalent systemic mycosis in Latin America. The response to heat shock is involved in pathogenesis, as this pathogen switches from mycelium to yeast forms in a temperature dependent fashion that is essential to establish infection. HSP90 is a molecular chaperone that helps in the folding and stabilization of selected polypeptides. HSP90 family members have been shown to present important roles in fungi, especially in the pathogenic species, as an immunodominant antigen and also as a potential antifungal therapeutic target. RESULTS: In this work, we decided to further study the Pbhsp90 gene, its expression and role in cell viability because it plays important roles in fungal physiology and pathogenesis. Thus, we have sequenced a Pbhsp90 cDNA and shown that this gene is present on the genome as a single copy. We have also confirmed its preferential expression in the yeast phase and its overexpression during dimorphic transition and oxidative stress. Treatment of the yeast with the specific HSP90 inhibitors geldanamycin and radicicol inhibited growth at 2 and 10 microM, respectively. CONCLUSION: The data confirm that the Pbhsp90 gene encodes a morphologically regulated and stress-responsive protein whose function is essential to cell viability of this pathogen. This work also enforces the potential of HSP90 as a target for antifungal therapies, since the use of HSP90 inhibitors is lethal to the P. brasiliensis yeast cells in a dose-responsive manner.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas de Choque Térmico HSP90/genética , Estresse Oxidativo/genética , Paracoccidioides/fisiologia , Sequência de Aminoácidos , Benzoquinonas/farmacologia , Sobrevivência Celular , Dosagem de Genes , Perfilação da Expressão Gênica , Proteínas de Choque Térmico HSP90/química , Lactamas Macrocíclicas/farmacologia , Macrolídeos/farmacologia , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Paracoccidioides/efeitos dos fármacos , Paracoccidioides/genética , Paracoccidioides/metabolismo , Alinhamento de Sequência
20.
Mycopathologia ; 165(4-5): 249-58, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18777632

RESUMO

Paracoccidioiddes brasiliensis is a thermodimorphic fungus endemic to Latin America, where it causes the most prevalent systemic mycosis, paracoccidioidomycosis (PCM). DNA microarray technology has been used to identify patterns of gene expression when a microbe is confronted with conditions of interest, such as in vitro and/or ex vivo interaction with specific cells. P. brasiliensis is one organism that has benefited from this approach. Even though its genome has not been sequenced yet, much has been discovered from its transcriptome and DNA array analyses. In this review, we will outline the current knowledge in P. brasiliensis transcriptome, with focus on differential expression analysis in vitro and on the discussion of the genes that are controlled during the host-pathogen interaction ex vivo in order to give insights into the pathobiology of this fungus. In vitro experiments enabled the delineation of whole metabolic pathways; the description of differential metabolism between mycelium and yeast cells and of the mainly signaling pathways controlling dimorphism, high temperature growth, thermal and oxidative stress, and virulence/ pathogenicity. Recent ex vivo experiments provided advances on the comprehension of the plasticity of response and indicate that P. brasiliensis is not only able to undergo fast and dramatic expression profile changes but can also discern subtle differences, such as whether it is being attacked by a macrophage or submitted to the bloodstream route conditions.


Assuntos
Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Paracoccidioides , Animais , Proteínas Fúngicas/genética , Humanos , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Paracoccidioides/patogenicidade , Paracoccidioides/fisiologia , Paracoccidioidomicose/microbiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA