Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Biol ; 435(16): 168170, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37271493

RESUMO

Argonaute 2 (Ago2) is a key component of the RNA interference (RNAi) pathway, a gene-regulatory system that is present in most eukaryotes. Ago2 uses microRNAs (miRNAs) and small interfering RNAs (siRNAs) for targeting to homologous mRNAs which are then degraded or translationally suppressed. In plants and invertebrates, the RNAi pathway has well-described roles in antiviral defense, but its function in limiting viral infections in mammalian cells is less well understood. Here, we examined the role of Ago2 in replication of the betacoronavirus SARS-CoV-2, the etiologic agent of COVID-19. Microscopic analyses of infected cells revealed that a pool of Ago2 closely associates with viral replication sites and gene ablation studies showed that loss of Ago2 resulted in over 1,000-fold increase in peak viral titers. Replication of the alphacoronavirus 229E was also significantly increased in cells lacking Ago2. The antiviral activity of Ago2 was dependent on both its ability to bind small RNAs and its endonuclease function. Interestingly, in cells lacking Dicer, an upstream component of the RNAi pathway, viral replication was the same as in parental cells. This suggests that the antiviral activity of Ago2 is independent of Dicer processed miRNAs. Deep sequencing of infected cells by other groups identified several SARS-CoV-2-derived small RNAs that bind to Ago2. A mutant virus lacking the most abundant ORF7A-derived viral miRNA was found to be significantly less sensitive to Ago2-mediated restriction. This combined with our findings that endonuclease and small RNA-binding functions of Ago2 are required for its antiviral function, suggests that Ago2-small viral RNA complexes target nascent viral RNA produced at replication sites for cleavage. Further studies are required to elucidate the processing mechanism of the viral small RNAs that are used by Ago2 to limit coronavirus replication.


Assuntos
Proteínas Argonautas , COVID-19 , MicroRNAs , Interferência de RNA , SARS-CoV-2 , Animais , Humanos , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , COVID-19/metabolismo , COVID-19/virologia , MicroRNAs/genética , RNA de Cadeia Dupla , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo
2.
ACS Infect Dis ; 9(4): 749-761, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37011043

RESUMO

The recent emergence of SARS-CoV-2 in the human population has caused a global pandemic. The virus encodes two proteases, Mpro and PLpro, that are thought to play key roles in the suppression of host protein synthesis and immune response evasion during infection. To identify the specific host cell substrates of these proteases, active recombinant SARS-CoV-2 Mpro and PLpro were added to A549 and Jurkat human cell lysates, and subtiligase-mediated N-terminomics was used to capture and enrich protease substrate fragments. The precise location of each cleavage site was identified using mass spectrometry. Here, we report the identification of over 200 human host proteins that are potential substrates for SARS-CoV-2 Mpro and PLpro and provide a global mapping of proteolysis for these two viral proteases in vitro. Modulating proteolysis of these substrates will increase our understanding of SARS-CoV-2 pathobiology and COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Peptídeo Sintases , Peptídeo Hidrolases/metabolismo
3.
Viruses ; 14(5)2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35632712

RESUMO

Zika virus (ZIKV) establishes persistent infections in multiple human tissues, a phenomenon that likely plays a role in its ability to cause congenital birth defects and neurological disease. Multiple nonstructural proteins encoded by ZIKV, in particular NS5, are known to suppress the interferon (IFN) response by attacking different steps in this critical antiviral pathway. Less well known are the potential roles of structural proteins in affecting the host immune response during ZIKV infection. Capsid proteins of flaviviruses are of particular interest because a pool of these viral proteins is targeted to the nuclei during infection and, as such, they have the potential to affect host cell gene expression. In this study, RNA-seq analyses revealed that capsid proteins from six different flaviviruses suppress expression of type I IFN and IFN-stimulated genes. Subsequent interactome and in vitro ubiquitination assays showed that ZIKV capsid protein binds to and prevents activating ubiquitination of RIG-I CARD domains by TRIM25, a host factor that is important for the induction arm of the IFN response. The other flavivirus capsid proteins also interacted with TRIM25, suggesting that these viral proteins may attenuate antiviral signaling pathways at very early stages of infection, potentially even before nonstructural proteins are produced.


Assuntos
Proteínas do Capsídeo , Interferons , Infecção por Zika virus , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Humanos , Interferons/imunologia , Proteínas não Estruturais Virais/genética , Zika virus/metabolismo , Zika virus/fisiologia , Infecção por Zika virus/imunologia
4.
Cells ; 10(12)2021 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-34944018

RESUMO

Mayaro virus (MAYV) is an emerging mosquito-transmitted virus that belongs to the genus Alphavirus within the family Togaviridae. Humans infected with MAYV often develop chronic and debilitating arthralgia and myalgia. The virus is primarily maintained via a sylvatic cycle, but it has the potential to adapt to urban settings, which could lead to large outbreaks. The interferon (IFN) system is a critical antiviral response that limits replication and pathogenesis of many different RNA viruses, including alphaviruses. Here, we investigated how MAYV infection affects the induction phase of the IFN response. Production of type I and III IFNs was efficiently suppressed during MAYV infection, and mapping revealed that expression of the viral non-structural protein 2 (nsP2) was sufficient for this process. Interactome analysis showed that nsP2 interacts with DNA-directed RNA polymerase II subunit A (Rpb1) and transcription initiation factor IIE subunit 2 (TFIIE2), which are host proteins required for RNA polymerase II-mediated transcription. Levels of these host proteins were reduced by nsP2 expression and during infection by MAYV and related alphaviruses, suggesting that nsP2-mediated inhibition of host cell transcription is an important aspect of how some alphaviruses block IFN induction. The findings from this study may prove useful in design of vaccines and antivirals, which are currently not available for protection against MAYV and infection by other alphaviruses.


Assuntos
Alphavirus/metabolismo , Interações Hospedeiro-Patógeno , Interferons/metabolismo , Subunidades Proteicas/metabolismo , Fatores de Transcrição TFII/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Regulação para Baixo , Humanos , Fator Regulador 3 de Interferon/metabolismo , Ligação Proteica , Transporte Proteico , RNA Polimerase II/metabolismo , Transcrição Gênica
5.
J Virol ; 95(13): e0026621, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34110264

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic. While previous studies have shown that several SARS-CoV-2 proteins can antagonize the interferon (IFN) response, some of the mechanisms by which they do so are not well understood. In this study, we describe two novel mechanisms by which SARS-CoV-2 blocks the IFN pathway. Type I IFNs and IFN-stimulated genes (ISGs) were poorly induced during SARS-CoV-2 infection, and once infection was established, cells were highly resistant to ectopic induction of IFNs and ISGs. Levels of two key IFN signaling pathway components, Tyk2 and STAT2, were significantly lower in SARS-CoV-2-infected cells. Expression of nonstructural protein 1 (NSP1) or nucleocapsid in the absence of other viral proteins was sufficient to block IFN induction, but only NSP1 was able to inhibit IFN signaling. Mapping studies suggest that NSP1 prevents IFN induction in part by blocking IRF3 phosphorylation. In addition, NSP1-induced depletion of Tyk2 and STAT2 dampened ISG induction. Together, our data provide new insights into how SARS-CoV-2 successfully evades the IFN system to establish infection. IMPORTANCE SARS-CoV-2 is the causative agent of COVID-19, a serious disease that can have a myriad of symptoms from loss of taste and smell to pneumonia and hypercoagulation. The rapid spread of SARS-CoV-2 can be attributed in part to asymptomatic transmission, where infected individuals shed large amounts of virus before the onset of disease. This is likely due to the ability of SARS-CoV-2 to effectively suppress the innate immune system, including the IFN response. Indeed, we show that the IFN response is efficiently blocked during SARS-CoV-2 infection, a process that is mediated in large part by nonstructural protein 1 and nucleocapsid. Our study provides new insights on how SARS-CoV-2 evades the IFN response to successfully establish infection. These findings should be considered for the development and administration of therapeutics against SARS-CoV-2.


Assuntos
Interferon Tipo I/antagonistas & inibidores , SARS-CoV-2/metabolismo , Transdução de Sinais , Proteínas não Estruturais Virais/metabolismo , Animais , COVID-19/imunologia , COVID-19/virologia , Chlorocebus aethiops , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Células HEK293 , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Fosfoproteínas/metabolismo , SARS-CoV-2/patogenicidade , Fator de Transcrição STAT2/metabolismo , TYK2 Quinase/metabolismo , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA