RESUMO
Micronuclei (MN) are a nuclear abnormality that occurs when chromosome fragments or whole chromosomes are not properly segregated during mitosis and consequently are excluded from the main nuclei and wrapped within nuclear membrane to form small nuclei. This maldistribution of genetic material leads to abnormal cellular genomes which may increase risk of developmental defects, cancers, and accelerated aging. Despite the potential importance of MN as biomarkers of genotoxicity, very little was known about the optimal way to measure MN in humans, the normal ranges of values of MN in healthy humans and the prospective association of MN with developmental and degenerative diseases prior to the 1980's. In the early 1980's two important methods to measure MN in humans were developed namely, the cytokinesis-block MN (CBMN) assay using peripheral blood lymphocytes and the Buccal MN assay that measures MN in epithelial cells from the oral mucosa. These discoveries greatly increased interest to use MN assays in human studies. In 1997 the Human Micronucleus (HUMN) project was founded to initiate an international collaboration to (i) harmonise and standardise the techniques used to perform the lymphocyte CBMN assay and the Buccal MN assay; (ii) establish and collate databases of MN frequency in human populations world-wide which also captured demographic, lifestyle and environmental genotoxin exposure data and (iii) use these data to identify the most important variables affecting MN frequency and to also determine whether MN predict disease risk. In this paper we briefly describe the achievements of the HUMN project during the period from the date of its foundation on 9th September 1997 until its 26th Anniversary in 2023, which included more than 200 publications and 23 workshops world-wide.
RESUMO
Adequate micronutrient intake and status are global public health goals. Vitamin and mineral deficiencies are widespread and known to impair health and survival across the life stages. However, knowledge of molecular effects, metabolic pathways, biological responses to variation in micronutrient nutriture, and abilities to assess populations for micronutrient deficiencies and their pathology remain lacking. Rapidly evolving methodological capabilities in genomics, epigenomics, proteomics, and metabolomics offer unparalleled opportunities for the nutrition research community to link micronutrient exposure to cellular health; discover new, arguably essential micronutrients of microbial origin; and integrate methods of molecular biology, epidemiology, and intervention trials to develop novel approaches to assess and prevent micronutrient deficiencies in populations. In this review article, we offer new terminology to specify nutritional application of multiomic approaches and encourage collaboration across the basic to public health sciences to advance micronutrient deficiency prevention.
Assuntos
Biomarcadores , Micronutrientes , Saúde Pública , Humanos , Micronutrientes/deficiência , Metabolômica/métodos , Proteômica/métodos , Genômica , Estado Nutricional , Epigenômica/métodos , MultiômicaRESUMO
Micronucleus (MN) assays with buccal cells are at present widely used to investigate occupational exposures to genotoxic carcinogens. This article describes their use for the monitoring of metal exposed workers. We found in total 73 relevant articles, in the majority (97â¯%) increased MN and/or other nuclear anomalies were reported. Most studies were realized in South East Asia and South America. A variety of different occupations was studied including welders, electroplaters, painters, workers in battery recycling and production, tannery workers, dental technicians, miners, workers in foundries and smelters, and also subjects working in waste recycling, glass, aluminum and steel production. In many investigations the effects increased with the duration of the working period. The quality of individual studies was evaluated with a quality score tool. The number of cells was in most studies sufficient and DNA-specific stains were used. However, many studies have shortcomings, e.g. they focused solely on MN formation and did not evaluate anomalies, which provide additional information about the stability of the genetic material and acute cytotoxic effects. Only 35â¯% of the investigations contain quantitative information about exposures to metals and other toxicants. In 6 of these studies, correlations were observed between the concentrations of specific metals (As, Pb, Cr, Cd) in body fluids and MN frequencies. Taken together, the available data indicate that the MN assay can be used to detect chromosomal damage in metal exposed groups; furthermore, it enables also comparisons between subgroups differing in regard to their exposure and allows an estimation of the efficiency of protective measures. The exposure of workers to metals is currently controlled with chemical analytical measurements only, MN assays with buccal cells could contribute to further improve the safety at workplaces as they reflect the biological consequences including synergistic and antagonistic interactions between toxicants.
RESUMO
PURPOSE: Magnesium is one of the most common elements in the human body and plays an important role as a cofactor of enzymes required for DNA replication and repair and many other biochemical mechanisms including sensing and regulating one-carbon metabolism deficiencies. Low intake of magnesium can increase the risk of many diseases, in particular, chronic degenerative disorders. However, its role in prevention of DNA damage has not been studied fully in humans so far. Therefore, we tested the hypothesis that magnesium deficiency either on its own or in conjunction with high homocysteine (Hcy) induces DNA damage in vivo in humans. METHODS: The present study was carried out in 172 healthy middle aged subjects from South Australia. Blood levels of magnesium, Hcy, folate and vitamin B12 were measured. Cytokinesis-Block Micronucleus cytome assay was performed to measure three DNA damage biomarkers: micronuclei (MN), nucleoplasmic bridges (NPBs) and nuclear buds (NBuds) in peripheral blood lymphocytes. RESULTS: Data showed that magnesium and Hcy are significantly inversely correlated with each other (r = - 0.299, p < 0.0001). Furthermore, magnesium is positively correlated both with folate (p = 0.002) and vitamin B12 (p = 0.007). Magnesium is also significantly inversely correlated with MN (p < 0.0001) and NPB (p < 0.0001). Individuals with low magnesium and high Hcy exhibited significantly higher frequency of MN and NPBs compared to those with high magnesium and low Hcy (p < 0.0001). Furthermore, there was an interactive effect between these two factors as well in inducing MN (p = 0.01) and NPB (p = 0.048). CONCLUSIONS: The results obtained in the present study indicate for the first time that low in vivo levels of magnesium either on its own or in the presence of high Hcy increases DNA damage as evident by higher frequencies of MN and NPBs.
Assuntos
Dano ao DNA , Ácido Fólico , Homocisteína , Magnésio , Vitamina B 12 , Humanos , Dano ao DNA/efeitos dos fármacos , Homocisteína/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Ácido Fólico/sangue , Magnésio/sangue , Vitamina B 12/sangue , Deficiência de Magnésio/sangue , Testes para Micronúcleos/métodos , Adulto , Austrália do Sul , Biomarcadores/sangue , Linfócitos/metabolismo , Linfócitos/efeitos dos fármacos , População AustralasianaRESUMO
In this report we provide a summary of the presentations and discussion of the latest knowledge regarding the buccal micronucleus (MN) cytome assay. This information was presented at the HUMN workshop held in Malaga, Spain, in connection with the 2023 European, Environmental Mutagenesis and Genomics conference. The presentations covered the most salient topics relevant to the buccal MN cytome assay including (i) the biology of the buccal mucosa, (ii) its application in human studies relating to DNA damage caused by environmental exposure to genotoxins, (iii) the association of buccal MN with cancer and a wide range of reproductive, metabolic, immunological, neurodegenerative and other age-related diseases, (iv) the impact of nutrition and lifestyle on buccal MN cytome assay biomarkers; (v) its potential for application to studies of DNA damage in children and obesity, and (vi) the growing prospects of enhancing the clinical utility by automated scoring of the buccal MN cytome assay biomarkers by image recognition software developed using artificial intelligence. The most important knowledge gap is the need of prospective studies to test whether the buccal MN cytome assay biomarkers predict health and disease.
Assuntos
Inteligência Artificial , Dano ao DNA , Criança , Humanos , Estudos Prospectivos , Exposição Ambiental , BiomarcadoresRESUMO
Infertility affects millions of couples worldwide and has a profound impact not only on their families, but also on communities. Telomere attrition has been associated with infertility, DNA damage and fragmentation. Oxidative stress has been shown to affect sperm DNA integrity and telomere length. Sirtuins such as SIRT1 and SIRT3 are involved in aging and oxidative stress response. The aim of the present study is to determine the role of SIRT1 and SIRT3 in regulating oxidative stress, telomere shortening, and their association with oligospermia. Therefore, we assessed the protein levels of SIRT1 and SIRT3, total antioxidant capacity (TAC), superoxide dismutase (SOD), malondialdehyde (MDA) and catalase activity (CAT) in the seminal plasma of 272 patients with oligospermia and 251 fertile men. We also measured sperm telomere length (STL) and leukocyte telomere length (LTL) using a standard real-time quantitative PCR assay. Sperm chromatin and protamine deficiency were also measured as per standard methods. Our results for oligospermic patients demonstrate significant reductions in semen parameters, shorter STL and LTL, lower levels of SOD, TAC, CAT, SIRT1 and SIRT3 levels, and also significant protamine deficiency and higher levels of MDA and DNA fragmentation. We conclude that a shorter TL in sperms and leukocytes is associated with increased oxidative stress that also accounts for high levels of DNA fragmentation in sperms. Our results support the hypothesis that various sperm parameters in the state of oligospermia are associated with or caused by reduced levels of SIRT1 and SIRT3 proteins.
Assuntos
Oligospermia , Sirtuína 3 , Humanos , Masculino , Sêmen , Oligospermia/genética , Antioxidantes , Sirtuína 3/genética , Sirtuína 1/genética , Espermatozoides , Protaminas , Superóxido Dismutase/genéticaRESUMO
The aim of this review is to discuss how aneuploidy contributes to the aging process, and to identify plausible strategies for its prevention. After an overview of mechanisms leading to aneuploidy and the major features of cellular senescence, we discuss the link between (i) aneuploidy and cellular senescence; (ii) aneuploidy and aging; and (iii) cellular senescence and aging. We also consider (i) interactions between aneuploidy, micronuclei, cellular senescence and aging, (ii) the potential of nutritional treatments to prevent aneuploidy-associated senescence and aging, and (iii) knowledge and technological gaps. Evidence for a causal link between aneuploidy, senescence and aging is emerging. In vitro, aneuploidy accompanies the entry into cellular senescence and can itself induce senescence. How aneuploidy contributes in vivo to cellular senescence is less clear. Several routes depending on aneuploidy and/or senescence converge towards chronic inflammation, the major driver of unhealthy aging. Aneuploidy can induce the pro-inflammatory Senescence Associated Secretory Phenotype (SASP), either directly or as a result of micronucleus (MN) induction leading to leakage of DNA into the cytoplasm and triggering of the cGAS-STING pathway of innate immune response. A major difficulty in understanding the impact of aneuploidy on senescence and aging in vivo, results from the heterogeneity of cellular senescence in different tissues at the cytological and molecular level. Due to this complexity, there is at the present time no biomarker or biomarker combination characteristic for all types of senescent cells. In conclusion, a deeper understanding of the critical role aneuploidy plays in cellular senescence and aging is essential to devise practical strategies to protect human populations from aneuploidy-associated pathologies. We discuss emerging evidence, based on in vitro and in vivo studies, that adequate amounts of specific micronutrients are essential for prevention of aneuploidy in humans and that precise nutritional intervention may be essential to help avoid the scourge of aneuploidy-driven diseases.
Assuntos
Envelhecimento , Senescência Celular , Humanos , Envelhecimento/genética , Senescência Celular/genética , Biomarcadores , Inflamação , AneuploidiaRESUMO
High intake of red meat and/or dairy products may increase the concentration of iron and calcium in plasma-a risk factor for prostate cancer (PC). Despite our understandings of nutrients and their effects on the genome, studies on the effects of iron and calcium on radiation sensitivity of PC patients are lacking. Therefore, we tested the hypothesis that high plasma levels of iron and calcium could increase baseline or radiation-induced DNA damage in PC patients relative to healthy controls. The present study was performed on 106 PC patients and 132 age-matched healthy individuals. CBMN assay was performed to measure mi-cronuclei (MN), nucleoplasmic bridges (NPBs), and nuclear buds (NBuds) in lymphocytes. Plasma concentrations of iron and calcium were measured using inductively coupled plasma atomic emission spectroscopy. MN, NPBs, and NBuds induced by radiation ex vivo were significantly higher in PC patients with high plasma iron (Pâ =â .004, Pâ =â .047, and Pâ =â .0003, respectively) compared to healthy controls. Radiation-induced MN and NBuds frequency were also significantly higher in PC patients (Pâ =â .001 and Pâ =â .0001, respectively) with high plasma calcium levels relative to controls. Furthermore, radiation-induced frequency of NBuds was significantly higher in PC patients (Pâ <â .0001) with high plasma levels of both iron and calcium relative to controls. Our results support the hypothesis that high iron and calcium levels in plasma increases the sensitivity to radiation-induced DNA damage and point to the need of developing nutrition-based strategies to minimize DNA damage in normal tissue of PC patients undergoing radiotherapy.
Assuntos
Cálcio , Neoplasias da Próstata , Masculino , Humanos , Testes para Micronúcleos/métodos , Ferro/farmacologia , Linfócitos , Dano ao DNA , Neoplasias da Próstata/radioterapia , Tolerância a RadiaçãoRESUMO
Nutritional imbalances have been associated with a higher risk for cognitive impairment. This study determined the red blood cell (RBC) fatty acid profile of newly diagnosed mild cognitive impairment (MCI) and Alzheimer's disease (AD) patients compared to age and gender-matched controls. There was a significant increase in palmitic acid (p < 0.00001) for both MCI and AD groups. Saturated fatty acids were significantly elevated in the MCI group, including stearic acid (p = 0.0001), arachidic acid (p = 0.003), behenic acid (p = 0.0002), tricosanoic acid (p = 0.007) and lignoceric acid (p = 0.001). n-6 polyunsaturated fatty acids (PUFAs) were significantly reduced in MCI, including linoleic acid (p = 0.001), γ-linolenic acid (p = 0.03), eicosatrienoic acid (p = 0.009) and arachidonic acid (p < 0.00004). The n-3 PUFAs, α-linolenic acid and docosahexaenoic acid, were both significantly reduced in MCI and AD (p = 0.0005 and p = 0.00003). A positive correlation was evident between the Mini-Mental State Examination score and nervonic acid in MCI (r = 0.54, p = 0.01) and a negative correlation with γ-linolenic acid in AD (r = -0.43, p = 0.05). Differences in fatty acid profiles may prove useful as potential biomarkers reflecting increased risk for dementia.
RESUMO
Accumulation of deoxyribonucleic acid (DNA) damage diminishes cellular health, increases risk of developmental and degenerative diseases, and accelerates aging. Optimizing nutrient intake can minimize accrual of DNA damage. The objectives of this review are to: 1) assemble and systematically analyze high-level evidence for the effect of supplementation with micronutrients and phytochemicals on baseline levels of DNA damage in humans, and 2) use this knowledge to identify which of these essential micronutrients or nonessential phytochemicals promote DNA integrity in vivo in humans. We conducted systematic literature searches of the PubMed database to identify interventional, prospective, cross-sectional, or in vitro studies that explored the association between nutrients and established biomarkers of DNA damage associated with developmental and degenerative disease risk. Biomarkers included lymphocyte chromosome aberrations, lymphocyte and buccal cell micronuclei, DNA methylation, lymphocyte/leukocyte DNA strand breaks, DNA oxidation, telomere length, telomerase activity, and mitochondrial DNA mutations. Only randomized, controlled interventions and uncontrolled longitudinal intervention studies conducted in humans were selected for evaluation and data extraction. These studies were ranked for the quality of their study design. In all, 96 of the 124 articles identified reported studies that achieved a quality assessment score ≥ 5 (from a maximum score of 7) and were included in the final review. Based on these studies, nutrients associated with protective effects included vitamin A and its precursor ß-carotene, vitamins C, E, B1, B12, folate, minerals selenium and zinc, and phytochemicals such as curcumin (with piperine), lycopene, and proanthocyanidins. These findings highlight the importance of nutrients involved in (i) DNA metabolism and repair (folate, vitamin B12, and zinc) and (ii) prevention of oxidative stress and inflammation (vitamins A, C, E, lycopene, curcumin, proanthocyanidins, selenium, and zinc). Supplementation with certain micronutrients and their combinations may reduce DNA damage and promote cellular health by improving the maintenance of genome integrity.
Assuntos
Curcumina , Proantocianidinas , Selênio , Humanos , Estudos Prospectivos , Licopeno , Estudos Transversais , Curcumina/farmacologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Vitaminas/farmacologia , Vitamina A , Micronutrientes/farmacologia , Ácido Fólico/farmacologia , Zinco/farmacologia , Bebidas , Compostos Fitoquímicos/farmacologia , DNA , Dano ao DNA , Biomarcadores , Suplementos NutricionaisRESUMO
Telomeres are repetitive nucleotide (TTAGGG) sequences that stabilize the chromosome ends and play an important role in the prevention of cancer initiation and progression. Nucleoplasmic bridges (NPBs) are formed when chromatids remain joined together during mitotic anaphase either due to mis-repair of DNA breaks or due to chromatid end fusion as a result of telomere loss or telomere dysfunction. We tested the hypotheses that (i) telomere length (TL) is shorter in prostate cancer (PC) patients relative to healthy age-matched individuals, (ii) TL differs in different stages of PC and (iii) shorter TL is significantly correlated with NPBs formation in PC cases. TL was measured in whole blood by well-established quantitative PCR method and the frequency of NPBs was measured in lymphocytes using cytokinesis-block micronucleus cytome (CBMNcyt) assay. Our results indicate that TL is shorter and NPBs are increased in PC patients relative to age-matched healthy controls. Furthermore, TL was significantly shorter (p = 0.03) in patients with a Gleason score more than 7 and there was also a significant trend of decreasing TL across all three stages (p trend = 0.01; Gleason score <7, 7 and >7). Furthermore, TL was significantly inversely correlated with NPB frequency in PC patients (r = -0.316; p = 0.001) but not in controls (r = 0.163; p = 0.06) and their relationships became stronger with higher Gleason scores. More studies are required that can confirm our observations and explore mechanistic differences in the role of telomeres in NPB formation in PC cases relative to non-cancer cases.
RESUMO
OBJECTIVES: Little is known about the relationship between the supplements used for sport and safety, especially regarding the induction of genotoxicity. Therefore, more knowledge about a DNA damage possibly caused using sport supplements is necessary. The aim of this study was to investigate the potential association between the use of muscle-building supplements and DNA damage in resistance training practitioners. METHODS: Muscle-building supplements were classified into three categories based on evidence of efficacy and safety: Strong Evidence to Support Efficacy and Apparently Safe (SESEAS); Limited or Mixed Evidence to Support Efficacy (LMESE), and Little to No Evidence to Support Efficacy and/or Safety (LNESES). DNA damage was evaluated by the comet assay (DNA damage index and frequency) and buccal micronucleus by the cytome assay (micronuclei and nuclear buds). In the sequence, the adjusted analysis of covariance was performed. This study included 307 individuals ages 37.99 ± 13.95 y (52.1% men), of which 157 consumed supplements. RESULTS: The results of the comet assay revealed that participants who used supplements had higher DNA damage indexes (P = 0.018) and damage frequency (P = 0.045) than those who reported using no supplements. Moreover, the comet assay also indicated that the participants who used supplements classified into the SESEAS category presented the highest DNA damage index (P = 0.025) and frequency (P = 0.044) compared with those who used no supplements. However, we found no significant difference in the micronuclei and nuclear buds in the evaluated groups (P > 0.05). CONCLUSION: Supplement use is not associated with permanent damage, suggesting that SESEAS supplements are safe for consumption.
Assuntos
Treinamento Resistido , Masculino , Humanos , Feminino , Testes para Micronúcleos/métodos , Dano ao DNA , Ensaio Cometa/métodos , MúsculosRESUMO
BACKGROUND: The soluble form of receptor for advanced glycation end products (sRAGE) have been implicated in the prevention of numerous pathologic states, and highlights as an attractive therapeutic target. Because diets rich in monounsaturated fatty acids (MUFA) reduce postprandial oxidative stress and inflammation that is related to better health during aging, we investigated the association between red blood cell (RBC) fatty acids with circulatory AGE biomarkers and further stratified this correlation based on GG and GA + AA genotype. METHODS: A total of 172 healthy participants (median age = 53.74 ± 0.61 years) were recruited for the study. RBC fatty acid was analysed using gas chromatography and sRAGE was measured using a commercial ELISA kit. RESULTS: The result showed a non-significant correlation between total MUFA with sRAGE however oleic acid (C18:1) exhibited a positive correlation (r = 0.178, p = 0.01) that remained statistically significant (ß = 0.178, p = 0.02) after a stepwise multivariate regression analysis after adjusting for age, BMI and gender. In a univariate analysis, a positive significant correlation between C18:1 and sRAGE in GG genotype (r = 0.169, p = 0.02) and a non-significant correlation with GA + AA genotype (r = 0.192, p = 0.21) was evident. When C18:1 was stratified, a significant difference was observed for oleic acid and G82S polymorphism: low C18:1/GA + AA versus high C18:1/GG (p = 0.015) and high C18:1/GA + AA versus high C18:1/GG (p = 0.02). CONCLUSION: Our study suggests that increased levels of C18:1 may be a potential therapeutic approach in increasing sRAGE in those with GG genotype and play a role in modulating AGE metabolism.
Assuntos
Eritrócitos , Reação de Maillard , Ácido Oleico , Receptor para Produtos Finais de Glicação Avançada , Humanos , Pessoa de Meia-Idade , Alelos , Ácido Oleico/análise , Ácido Oleico/sangue , Ácido Oleico/metabolismo , Polimorfismo Genético , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Eritrócitos/químicaRESUMO
Almost half of prostate cancer (PC) patients receive radiation therapy as primary curative treatment. In spite of advances in our understanding of both nutrition and the genomics of prostate cancer, studies on the effects of nutrients on the radiation sensitivity of PC patients are lacking. We tested the hypothesis that low plasma levels of selenium and lycopene have detrimental effects on ionising radiation-induced DNA damage in prostate cancer patients relative to healthy individuals. The present study was performed in 106 PC patients and 132 age-matched controls. We found that the radiation-induced micronucleus (MN) and nuclear buds (NBuds) frequencies were significantly higher in PC patients with low selenium (p = 0.008 and p = 0.0006 respectively) or low lycopene (p = 0.007 and p = 0.0006 respectively) levels compared to the controls. The frequency of NBuds was significantly higher (p < 0.0001) in PC patients who had low levels of both selenium and lycopene compared to (i) controls with low levels of both selenium and lycopene and (ii) PC patients with high levels of both selenium and lycopene (p = 0.0001). Our results support the hypothesis that low selenium and lycopene levels increase the sensitivity to radiation-induced DNA damage and suggest that nutrition-based treatment strategies are important to minimise the DNA-damaging effects in PC patients receiving radiotherapy.
RESUMO
The relationship between sleep and micronutrients, including magnesium, is implicated in its regulation. The effects of low magnesium and other micronutrients on sleep disruption and telomere loss are not well understood. The present study was carried out in 172 healthy elderly subjects from South Australia. Plasma micronutrients including magnesium were measured. Each participant provided information about their sleep hours (<7 h or ≥7 h). Lymphocyte telomere length (TL) was measured by real-time qPCR assay. Plasma magnesium level was significantly low in subjects who sleep less than 7 h (p = 0.0002). TL was significantly shorter in people who are low in magnesium and sleep less than 7 h (p = 0.01). Plasma homocysteine (Hcy) is negatively associated with magnesium (r = −0.299; p < 0.0001). There is a significant interaction effect of magnesium and Hcy on sleep duration (p = 0.04) and TL (p = 0.003). Our results suggest that inadequate magnesium levels have an adverse impact on sleep and telomere attrition rate in cognitively normal elderly people, and this may be exacerbated by low levels of vitamin B12 and folate that elevate Hcy concentration.
Assuntos
Magnésio , Vitamina B 12 , Humanos , Idoso , Austrália , Ácido Fólico , Telômero/genética , Sono , Micronutrientes , HomocisteínaRESUMO
Micronutrient malnutrition is thought to play an important role in the cause of cognitive impairment and physical frailty. The purpose of this scoping review was to map current evidence on the association between micronutrient deficiency in blood and mild cognitive impairment, frailty, and cognitive frailty among older adults. The scoping review was conducted based on the 2005 methodological framework by Arksey and O'Malley. The search strategy for potential literature on micronutrient concentration in blood and cognitive frailty was retrieved based on the keywords using electronic databases (PubMed, Cochrane Library, Google Scholar, Ovid, and Science Direct) from January 2010 to December 2021. Gray literature was also included in the searches. A total of 4310 articles were retrieved and 43 articles were incorporated in the review. Findings revealed a trend of significant association between low levels of B vitamins (folate and vitamin B12), vitamin D, vitamin A, vitamin E, omega 3 fatty acid, and albumin, and high homocysteine levels in blood with an increased risk of mild cognitive impairment among older adults. The results also indicated that low vitamin D levels, albumin, and antioxidants (lutein and zeaxanthin) in blood were significantly associated with frailty among older adults, while ß-cryptoxanthin and zeaxanthin in blood were inversely associated with the risk of cognitive frailty. Vitamin D and antioxidants seemed to be targeted nutrients for the prevention of cognitive frailty. In conclusion, a wide range of micronutrient deficiency was associated with either mild cognitive impairment or frailty; however, little evidence exists on the dual impairment, i.e., cognitive frailty. This scoping review can serve as preliminary evidence for the association between micronutrient deficiency in blood and mild cognitive impairment, frailty, and cognitive frailty among older adults and prove the relevancy of the topic for future systematic reviews.
Assuntos
Disfunção Cognitiva , Fragilidade , Desnutrição , Oligoelementos , Humanos , Idoso , Micronutrientes , Fragilidade/epidemiologia , Desnutrição/epidemiologia , Vitaminas , Vitamina D , Disfunção Cognitiva/epidemiologia , Cognição , AlbuminasRESUMO
With older adults accounting for 10.7% of the Malaysian population, determining the predictors of mortality has now become crucial. Thus, this community-based longitudinal study aimed to investigate the predictors for mortality among community-dwelling older adults using a wide range of factors, including clinical or subclinical. A total of 2322 older adults were interviewed and assessed by trained fieldworkers using validated structured questionnaires. The questionnaire consisted of information on socio-demographic characteristics, health status, neuropsychological and psychosocial functions, lifestyle, dietary intake and biophysical measures. The incidence rate of mortality was 2.9 per 100 person-years. Cox regression analysis indicated that advancing age (Adjusted Hazard Ratio, Adj HR = 1.044, 95% CI: 1.024-1.064), male (Adj HR = 1.937, 95% CI: 1.402-2.675), non-married status (Adj HR = 1.410, 95% CI: 1.078-1.843), smoking (Adj HR = 1.314, 95% CI: 1.004-1.721), a higher fasting blood sugar (Adj HR = 1.075, 95% CI: 1.029-1.166), a lower serum albumin (Adj HR = 0.947, 95% CI: 0.905-0.990), a longer time to complete the TUG test (Adj HR = 1.059, 95% CI: 1.022-1.098), and a lower intake of total dietary fibre (Adj HR = 0.911, 95% CI: 0.873-0.980) were the predictors of mortality in this study. These findings provide an estimated rate of multiethnic mortality in middle-income countries and diet is one of the predictors. These predictors of mortality could be a reference in identifying new public health strategies to ensure longer healthier life spans with lower disability rate among community-dwelling older adults in Malaysia.
Assuntos
Vida Independente , Estilo de Vida , Mortalidade , Idoso , Doença Crônica/epidemiologia , Humanos , Incidência , Estudos Longitudinais , Malásia/epidemiologia , MasculinoRESUMO
The accurate segregation of sister chromatids is complex, and errors that arise throughout this process can drive chromosomal instability and tumorigenesis. We recently showed that methylglyoxal (MGO), a glycolytic by-product, can cause chromosome missegregation events in lymphocytes. However, the underlying mechanisms of this were not explored. Therefore, in this study, we utilised shotgun proteomics to identify MGO-modified proteins, and label-free quantitation to measure changes in protein abundance following exposure to MGO. We identified numerous mitotic proteins that were modified by MGO, including those involved in the separation and cohesion of sister chromatids. Furthermore, the protein abundance of Securin, an inhibitor of sister chromatid separation, was increased following treatment with MGO. Cytological examination of chromosome spreads showed MGO prevented sister chromatid separation, which was associated with the formation of complex nuclear anomalies. Therefore, results from this study suggest MGO may drive chromosomal instability by preventing sister chromatid separation.
Assuntos
Cromátides , Aldeído Pirúvico , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Instabilidade Cromossômica , Segregação de Cromossomos , Humanos , Linfócitos/metabolismo , Óxido de Magnésio , Aldeído Pirúvico/farmacologiaRESUMO
Methylglyoxal (MGO) is a highly reactive cellular metabolite that glycates lysine and arginine residues to form post-translational modifications known as advanced glycation end products. Because of their low abundance and low stoichiometry, few studies have reported their occurrence and site-specific locations in proteins. Proteomic analysis of WIL2-NS B lymphoblastoid cells in the absence and presence of exogenous MGO was conducted to investigate the extent of MGO modifications. We found over 500 MGO modified proteins, revealing an over-representation of these modifications on many glycolytic enzymes, as well as ribosomal and spliceosome proteins. Moreover, MGO modifications were observed on the active site residues of glycolytic enzymes that could alter their activity. We similarly observed modification of glycolytic enzymes across several epithelial cell lines and peripheral blood lymphocytes, with modification of fructose bisphosphate aldolase being observed in all samples. These results indicate that glycolytic proteins could be particularly prone to the formation of MGO adducts.
Assuntos
Proteômica , Aldeído Pirúvico , Produtos Finais de Glicação Avançada/metabolismo , Glicólise , Óxido de Magnésio , Proteínas/metabolismo , Aldeído Pirúvico/metabolismoRESUMO
This review discusses how numerical aneuploidy may trigger inflammation in somatic cells and its consequences. Therefore we: i) summarized current knowledge on the cellular and molecular pathological effects of aneuploidy; ii) considered which of these aspects are able to trigger inflammation; iii) determined the genetic and environmental factors which may modulate the link between aneuploidy and inflammation; iv) explored the rôle of diet in prevention of aneuploidy and inflammation; v) examined whether aneuploidy and inflammation are causes and/or consequences of diseases; vi) identified the knowledge gaps and research needed to translate these observations into improved health care and disease prevention. The relationships between aneuploidy, inflammation and diseases are complex, because they depend on which chromosomes are involved, the proportion of cells affected and which organs are aneuploid in the case of mosaic aneuploidy. Therefore, a systemic approach is recommended to understand the emergence of aneuploidy-driven diseases and to take preventive measures to protect individuals from exposure to aneugenic conditions.