Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Cell Int ; 20: 71, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32165861

RESUMO

BACKGROUND: Gliomas represent the largest class of primary central nervous system neoplasms, many subtypes of which exhibit poor prognoses. Surgery followed by radiotherapy and chemotherapy has been used as a standard strategy but yielded unsatisfactory improvements in patient survival outcomes. The S-phase kinase protein 2 (Skp2), a critical component of the E3-ligase SCF complex, has been documented in tumorigenesis in various cancer types but its role in glioma has yet to be fully clarified. In this study, we investigated the function of Skp2 in the proliferation, stem cell maintenance, and drug sensitivity to temozolomide (TMZ) of glioma. METHODS: To investigate the role of Skp2 in the prognosis of patients with glioma, we first analyzed data in databases TCGA and GTEx. To further clarify the effect of Skp2 on glioma cell proliferation, we suppressed its level in glioblastoma (GBM) cell lines through knockdown and small molecule inhibitors (lovastatin and SZL-P1-41). We then detected cell growth, colony formation, sphere formation, drug sensitivity, and in vivo tumor formation in xenograft mice model. RESULTS: Skp2 mRNA level was higher in both low-grade glioma and GBM than normal brain tissues. The knockdown of Skp2 increased cell sensitivity to TMZ, decreased cell proliferation and tumorigenesis. In addition, Skp2 level was found increased upon stem cells enriching, while the knockdown of Skp2 led to reduced sphere numbers. Downregulation of Skp2 also induced senescence. Repurposing of lovastatin and novel compound SZL-P1-41 suppressed Skp2 effectively, and enhanced glioma cell sensitivity to TMZ in vitro and in vivo. CONCLUSION: Our data demonstrated that Skp2 modulated glioma cell proliferation in vitro and in vivo, stem cell maintenance, and cell sensitivity to TMZ, which indicated that Skp2 could be a potential target for long-term treatment.

2.
Oncotarget ; 8(43): 75232-75242, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-29088860

RESUMO

N25, a novel histone deacetylase inhibitor, was created through structural modification of suberoylanilide hydroxamic acid. To evaluate the anti-tumor activity of N25 and clarify its molecular mechanism of inducing autophagy in glioma cells, we investigated its in vitro anti-proliferative effect and in vivo anticancer effect. Moreover, we detected whether N25 induces autophagy in glioma cells by transmission electron microscope and analyzed the protein expression level of HDAC3, Tip60, LC3 in glioma samples by western blot. We additionally analyzed the protein expression level of HDAC3, Tip60, ULK1 (Atg1), and Beclin-1 (Atg6) after treatment with N25 in glioma cells. Our results showed that the anti-tumor activity of N25 in glioma cells is slightly stronger than SAHA both in vitro and in vivo. We found that N25 induced autophagy, and HDAC3 was significantly elevated and Tip60 and LC3 significantly decreased in glioma samples compared with normal brain tissues. Nevertheless, N25 inhibited HDAC3 and up-regulated the protein expression of Tip60, ULK1 (Atg1), and Beclin-1 (Atg6) after treatment of glioma cells with N25. In conclusion, these data suggest that N25 has striking anti-tumor activity in part due to inhibition of HDAC3. Additionally, N25 may induce autophagy through inhibiting HDAC3.

3.
Asian Pac J Cancer Prev ; 15(10): 4331-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24935393

RESUMO

N1- (2, 5-dimethoxyphenyl)-N(8)-hydroxyoctanediamide (N25) is a novel SAHA cap derivative of HDACi, with a patent (No. CN 103159646). This invention is a hydroxamic acid compound with a structural formula of RNHCO(CH2)6CONHOH (wherein R=2, 5dimethoxyaniline), a pharmaceutically acceptable salt which is soluble. In the present study, we investigated the effects of N25 with regard to drug distribution and molecular docking, and anti-proliferation, apoptosis, cell cycling, and LD50. First, we designed a molecular approach for modeling selected SAHA derivatives based on available structural information regarding human HDAC8 in complex with SAHA (PDB code 1T69). N25 was found to be stabilized by direct interaction with the HDAC8. Anti-proliferative activity was observed in human glioma U251, U87, T98G cells and human lung cancer H460, A549, H1299 cells at moderate concentrations (0.5-30 µM). Compared with SAHA, N25 displayed an increased antitumor activity in U251 and H460 cells. We further analyzed cell death mechanisms activated by N25 in U251 and H460 cells. N25 significantly increased acetylation of Histone 3 and inhibited HDAC4. On RT-PCR analysis, N25 increased the mRNA levels of p21, however, decreased the levels of p53. These resulted in promotion of apoptosis, inducing G0/G1 arrest in U251 cells and G2/M arrest in H460 cells in a time-dependent and dose- dependent manner. In addition, N25 was able to distribute to brain tissue through the blood-brain barrier of mice (LD50: 240.840 mg/kg). In conclusion, our findings demonstrate that N25 will provide an invaluable tool to investigate the molecular mechanism with potential chemotherapeutic value in several malignancies, especially human glioma.


Assuntos
Anilidas/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Acetilação , Anilidas/farmacocinética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Inibidor de Quinase Dependente de Ciclina p21/genética , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Histona Desacetilases , Histonas/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacocinética , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Simulação de Acoplamento Molecular , Proteínas Repressoras/antagonistas & inibidores , Proteína Supressora de Tumor p53/biossíntese , Vorinostat
4.
Chin J Cancer ; 33(2): 115-22, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23958055

RESUMO

O6-methylguanine DNA methyltransferase (MGMT) can remove DNA alkylation adducts, thereby repairing damaged DNA and contributing to the drug resistance of gliomas to alkylating agents. In addition, glioma stem-like cells (GSCs) have been demonstrated to be involved in the recurrence and treatment resistance of gliomas. In this study, we aimed to investigate MGMT expression and regulatory mechanisms in GSCs and the association of MGMT with temozolomide (TMZ) sensitivity. GSCs were enriched from one MGMT-positive cell line (SF-767) and 7 MGMT-negative cell lines (U251, SKMG-4, SKMG-1, SF295, U87, MGR1, and MGR2) through serum-free clone culture. GSCs from the U251G, SKMG-4G, SF295G, and SKMG-1G cell lines became MGMT-positive, but those from the U87G, MGR1G, and MGR2G cell lines remained MGMT-negative. However, all the GSCs and their parental glioma cell lines were positive for nuclear factor-κB (NF-κB). In addition, GSCs were more resistant to TMZ than their parental glioma cell lines (P < 0.05). However, there was no significant difference in the 50% inhibition concentration (IC50) of TMZ between MGMT-positive and MGMT-negative GSCs (P > 0.05). When we treated the MGMT-positive GSCs with TMZ plus MG-132 (an NF-κB inhibitor), the antitumor activity was significantly enhanced compared to that of GSCs treated with TMZ alone (P <0.05). Furthermore, we found that MGMT expression decreased through the down-regulation of NF-κB expression by MG-132. Our results show that MG-132 may inhibit NF-κB expression and further decrease MGMT expression, resulting in a synergistic effect on MGMT-positive GSCs. These results indicate that enhanced MGMT expression contributes to TMZ resistance in MGMT-positive GSCs.


Assuntos
Dacarbazina/análogos & derivados , Glioma/patologia , Leupeptinas/farmacologia , NF-kappa B , Células-Tronco Neoplásicas/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Antineoplásicos Alquilantes/farmacologia , Linhagem Celular Tumoral , Dacarbazina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Glioma/metabolismo , Humanos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Temozolomida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA