Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 8(10): 1972-1990, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39152328

RESUMO

The evolution of the vertebrate liver is a prime example of the evolution of complex organs, yet the driving genetic factors behind it remain unknown. Here we study the evolutionary genetics of liver by comparing the amphioxus hepatic caecum and the vertebrate liver, as well as examining the functional transition within vertebrates. Using in vivo and in vitro experiments, single-cell/nucleus RNA-seq data and gene knockout experiments, we confirm that the amphioxus hepatic caecum and vertebrate liver are homologous organs and show that the emergence of ohnologues from two rounds of whole-genome duplications greatly contributed to the functional complexity of the vertebrate liver. Two ohnologues, kdr and flt4, play an important role in the development of liver sinusoidal endothelial cells. In addition, we found that liver-related functions such as coagulation and bile production evolved in a step-by-step manner, with gene duplicates playing a crucial role. We reconstructed the genetic footprint of the transfer of haem detoxification from the liver to the spleen during vertebrate evolution. Together, these findings challenge the previous hypothesis that organ evolution is primarily driven by regulatory elements, underscoring the importance of gene duplicates in the emergence and diversification of a complex organ.


Assuntos
Evolução Biológica , Anfioxos , Fígado , Análise de Célula Única , Vertebrados , Animais , Vertebrados/genética , Anfioxos/genética , Ceco
2.
BMC Genomics ; 25(1): 92, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254015

RESUMO

BACKGROUND: Gorals Naemorhedus resemble both goats and antelopes, which prompts much debate about the intragenus species delimitation and phylogenetic status of the genus Naemorhedus within the subfamily Caprinae. Their evolution is believed to be linked to the uplift of the Qinghai-Tibet Plateau (QTP). To better understand its phylogenetics, the genetic information is worth being resolved. RESULTS: Based on a sample from the eastern margin of QTP, we constructed the first reference genome for Himalayan goral Naemorhedus goral, using PacBio long-read sequencing and Hi-C technology. The 2.59 Gb assembled genome had a contig N50 of 3.70 Mb and scaffold N50 of 106.66 Mb, which anchored onto 28 pseudo chromosomes. A total of 20,145 protein-coding genes were predicted in the assembled genome, of which 99.93% were functionally annotated. Phylogenetically, the goral was closely related to muskox on the mitochondrial genome level and nested into the takin-muskox clade on the genome tree, rather than other so-called goat-antelopes. The cladogenetic event among muskox, takin and goral occurred sequentially during the late Miocene (~ 11 - 5 Mya), when the QTP experienced a third dramatic uplift with consequent profound changes in climate and environment. Several chromosome fusions and translocations were observed between goral and takin/muskox. The expanded gene families in the goral genome were mainly related to the metabolism of drugs and diseases, so as the positive selected genes. The Ne of goral continued to decrease since ~ 1 Mya during the Pleistocene with active glaciations. CONCLUSION: The high-quality goral genome provides insights into the evolution and valuable information for the conservation of this threatened group.


Assuntos
Antílopes , Animais , Antílopes/genética , Filogenia , Cabras/genética , Rearranjo Gênico , Cromossomos
3.
Elife ; 122023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38134226

RESUMO

As the deepest vertebrate in the ocean, the hadal snailfish (Pseudoliparis swirei), which lives at a depth of 6,000-8,000 m, is a representative case for studying adaptation to extreme environments. Despite some preliminary studies on this species in recent years, including their loss of pigmentation, visual and skeletal calcification genes, and the role of trimethylamine N-oxide in adaptation to high-hydrostatic pressure, it is still unknown how they evolved and why they are among the few vertebrate species that have successfully adapted to the deep-sea environment. Using genomic data from different trenches, we found that the hadal snailfish may have entered and fully adapted to such extreme environments only in the last few million years. Meanwhile, phylogenetic relationships show that they spread into different trenches in the Pacific Ocean within a million years. Comparative genomic analysis has also revealed that the genes associated with perception, circadian rhythms, and metabolism have been extensively modified in the hadal snailfish to adapt to its unique environment. More importantly, the tandem duplication of a gene encoding ferritin significantly increased their tolerance to reactive oxygen species, which may be one of the important factors in their adaptation to high-hydrostatic pressure.


Assuntos
Ecossistema , Vertebrados , Animais , Filogenia , Vertebrados/genética , Cromossomos
4.
Sci Adv ; 9(42): eadh0474, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37862424

RESUMO

Hydrothermal vent habitats are characterized by high hydrostatic pressure, darkness, and the continuous release of toxic metal ions into the surrounding environment where sea anemones and other invertebrates thrive. Nevertheless, the understanding of metazoan metal ion tolerances and environmental adaptations remains limited. We assembled a chromosome-level genome for the vent sea anemone, Alvinactis idsseensis sp. nov. Comparative genomic analyses revealed gene family expansions and gene innovations in A. idsseensis sp. nov. as a response to high concentrations of metal ions. Impressively, the metal tolerance proteins MTPs is a unique evolutionary response to the high concentrations of Fe2+ and Mn2+ present in the environments of these anemones. We also found genes associated with high concentrations of polyunsaturated fatty acids that may respond to high hydrostatic pressure and found sensory and circadian rhythm-regulated genes that were essential for adaptations to darkness. Overall, our results provide insights into metazoan adaptation to metal ions, high pressure, and darkness in hydrothermal vents.


Assuntos
Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/genética , Invertebrados , Ecossistema , Metais , Íons , Filogenia
5.
Immun Inflamm Dis ; 11(9): e988, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37773720

RESUMO

Osteoarthritis (OA) is a prevalent and distressing chronic degenerative joint disorder characterized by damaged articular cartilage and inflamed joints. Among risk factors, obesity has emerged as the second-leading contributor to OA after age. Obesity is believed to play a key role in the development and progression of OA. This study aimed to investigate the role and underlying mechanisms of high-fat diet (HFD)-induced obesity in the development of OA. Our findings revealed that HFD could aggravate the destabilization of the medial meniscus (DMM)-induced damage in the mouse model of obesity. Similar results were observed when macrophages obtained from HFD-fed mice were cocultured with cartilage and subsequently stimulated with interleukin-1ß (IL-1ß). Mechanistically, we observed a decrease in the expression of intraarticular macrophagic FBW7, which was implicated in the aggravation of OA in the HFD-fed animal. Furthermore, by modulating the immune status of macrophages, we found that reversing the macrophagic expression of FBW7 in these cells can alleviate the chondrocyte damage. In conclusion, this study provides novel insights into the pathological mechanisms underlying HFD-related OA development by identifying the role of FBW7 in synovial macrophages. These findings open up new avenues for research and therapeutic interventions targeting HFD-related OA.


Assuntos
Dieta Hiperlipídica , Proteína 7 com Repetições F-Box-WD , Osteoartrite , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Macrófagos , Obesidade/complicações , Obesidade/patologia , Osteoartrite/etiologia , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Proteína 7 com Repetições F-Box-WD/metabolismo
6.
Sci China Life Sci ; 66(11): 2629-2645, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37273070

RESUMO

Although most fishes are ectothermic, some, including tuna and billfish, achieve endothermy through specialized heat producing tissues that are modified muscles. How these heat producing tissues evolved, and whether they share convergent molecular mechanisms, remain unresolved. Here, we generated a high-quality genome from the mackerel tuna (Euthynnus affinis) and investigated the heat producing tissues of this fish by single-nucleus and bulk RNA sequencing. Compared with other teleosts, tuna-specific genetic variation is strongly associated with muscle differentiation. Single-nucleus RNA-seq revealed a high proportion of specific slow skeletal muscle cell subtypes in the heat producing tissues of tuna. Marker genes of this cell subtype are associated with the relative sliding of actin and myosin, suggesting that tuna endothermy is mainly based on shivering thermogenesis. In contrast, cross-species transcriptome analysis indicated that endothermy in billfish relies mainly on non-shivering thermogenesis. Nevertheless, the heat producing tissues of the different species do share some tissue-specific genes, including vascular-related and mitochondrial genes. Overall, although tunas and billfishes differ in their thermogenic strategies, they share similar expression patterns in some respects, highlighting the complexity of convergent evolution.


Assuntos
Temperatura Alta , Atum , Animais , Atum/genética , Termogênese/genética , Peixes/fisiologia , Músculos
7.
Sci China Life Sci ; 66(3): 563-578, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36166180

RESUMO

Major historical events often trigger the rapid flourishing of a few lineages, which in turn shape established biodiversity patterns. How did this process occur and develop? This study provides a window into this issue. The endemic East Asian carps (EEAC) dominated the ichthyofauna of East Asia and exhibited a high degree of adaptation to monsoonal river-lake ecosystems. A series of evidence, including ecogeography, phylogenetics, and macroevolution, suggests that the EEAC is a lineage that arose with the East Asian monsoon and thrived intimately with subsequent monsoon activities. We further deduce the evolution of the EEAC and find that a range of historical events in the monsoon setting (e.g., marine transgression and regression and glacial-interglacial cycle) have further reshaped the distribution patterns of EEAC's members. Comparative genomics analyses reveal that introgressions during the initial period of EEAC radiation and innovations in the regulation of the brain and nervous system may have aided their adaptation to river-lake ecosystems in a monsoon setting, which boosted radiation. Overall, this study strengthens knowledge of the evolutionary patterns of freshwater fishes in East Asia and provides a model case for understanding the impact of major historical events on the evolution of biota.


Assuntos
Carpas , Ecossistema , Animais , Ásia Oriental , Lagos , Rios
9.
Genomics Proteomics Bioinformatics ; 20(6): 1053-1065, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36216027

RESUMO

Pelagic cephalopods have evolved a series of fascinating traits, such as excellent visual acuity, high-speed agility, and photophores for adaptation to open pelagic oceans. However, the genetic mechanisms underpinning these traits are not well understood. Thus, in this study, we obtained high-quality genomes of two purpleback flying squid species (Sthenoteuthis oualaniensis and Sthenoteuthis sp.), with sizes of 5450 Mb and 5651 Mb, respectively. Comparative genomic analyses revealed that the S-crystallin subfamily SL20-1 associated with visual acuity in the purpleback flying squid lineage was significantly expanded, and the evolution of high-speed agility for the species was accompanied by significant positive selection pressure on genes related to energy metabolism. These molecular signals might have contributed to the evolution of their adaptative predatory and anti-predatory traits. In addition, the transcriptomic analysis provided clear indications of the evolution of the photophores of purpleback flying squids, especially the recruitment of new genes and energy metabolism-related genes which may have played key functional roles in the process.


Assuntos
Cefalópodes , Animais , Cefalópodes/genética , Decapodiformes/genética
10.
Nat Ecol Evol ; 6(9): 1354-1366, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35817827

RESUMO

Triploids are rare in nature because of difficulties in meiotic and gametogenic processes, especially in vertebrates. The Carassius complex of cyprinid teleosts contains sexual tetraploid crucian carp/goldfish (C. auratus) and unisexual hexaploid gibel carp/Prussian carp (C. gibelio) lineages, providing a valuable model for studying the evolution and maintenance mechanism of unisexual polyploids in vertebrates. Here we sequence the genomes of the two species and assemble their haplotypes, which contain two subgenomes (A and B), to the chromosome level. Sequencing coverage analysis reveals that C. gibelio is an amphitriploid (AAABBB) with two triploid sets of chromosomes; each set is derived from a different ancestor. Resequencing data from different strains of C. gibelio show that unisexual reproduction has been maintained for over 0.82 million years. Comparative genomics show intensive expansion and alterations of meiotic cell cycle-related genes and an oocyte-specific histone variant. Cytological assays indicate that C. gibelio produces unreduced oocytes by an alternative ameiotic pathway; however, sporadic homologous recombination and a high rate of gene conversion also exist in C. gibelio. These genomic changes might have facilitated purging deleterious mutations and maintaining genome stability in this unisexual amphitriploid fish. Overall, the current results provide novel insights into the evolutionary mechanisms of the reproductive success in unisexual polyploid vertebrates.


Assuntos
Carpas , Poliploidia , Animais , Genoma , Carpa Dourada/genética , Reprodução/genética
12.
Natl Sci Rev ; 9(12): nwac291, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36778108

RESUMO

Apparent cases of sympatric speciation may actually be due to micro-allopatric or micro-parapatric speciation. One way to distinguish between these models is to examine the existence and nature of genomic islands of divergence, wherein divergent DNA segments are interspersed with low-divergence segments. Such islands should be rare or absent under micro-allopatric speciation but common in cases of speciation with gene flow. Sympatric divergence of endemic fishes is known from isolated saline, crater, postglacial, and ancient lakes. Two morphologically distinct cyprinid fishes, Gymnocypris eckloni scoliostomus (GS) and G. eckloni eckloni (GE), in a small glacial lake on the Qinghai-Tibet Plateau, Lake Sunmcuo, match the biogeographic criteria of sympatric speciation. In this study, we examined genome-wide variation in 46 individuals from these two groups. The divergence time between the GS and GE lineages was estimated to be 20-60 Kya. We identified 54 large genomic islands (≥100 kb) of speciation, which accounted for 89.4% of the total length of all genomic islands. These islands harboured divergent genes related to olfactory receptors and olfaction signals that may play important roles in food selection and assortative mating in fishes. Although the genomic islands clearly indicated speciation with gene flow and rejected micro-allopatric speciation, they were too large to support the hypothesis of sympatric speciation. Theoretical and recent empirical studies suggested that continual gene flow in sympatry should give rise to many small genomic islands (as small as a few kilobases in size). Thus, the observed pattern is consistent with the extensive evidence on parapatric speciation, in which adjacent habitats facilitate divergent selection but also permit gene flow during speciation. We suggest that many, if not most, of the reported cases of sympatric speciation are likely to be micro-parapatric speciation.

14.
Mol Biol Evol ; 38(6): 2413-2427, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33533895

RESUMO

Endothermy is a typical convergent phenomenon which has evolved independently at least eight times in vertebrates, and is of significant advantage to organisms in extending their niches. However, how vertebrates other than mammals or birds, especially teleosts, achieve endothermy has not previously been fully understood. In this study, we sequenced the genomes of two billfishes (swordfish and sailfish), members of a representative lineage of endothermic teleosts. Convergent amino acid replacements were observed in proteins related to heat production and the visual system in two endothermic teleost lineages, billfishes and tunas. The billfish-specific genetic innovations were found to be associated with heat exchange, thermoregulation, and the specialized morphology, including elongated bill, enlarged dorsal fin in sailfish and loss of the pelvic fin in swordfish.


Assuntos
Evolução Biológica , Perciformes/genética , Termogênese/genética , Nadadeiras de Animais/anatomia & histologia , Animais , Genoma , Masculino , Perciformes/anatomia & histologia , Fenótipo , Visão Ocular/genética
15.
Cell ; 184(5): 1362-1376.e18, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545087

RESUMO

Lungfishes are the closest extant relatives of tetrapods and preserve ancestral traits linked with the water-to-land transition. However, their huge genome sizes have hindered understanding of this key transition in evolution. Here, we report a 40-Gb chromosome-level assembly of the African lungfish (Protopterus annectens) genome, which is the largest genome assembly ever reported and has a contig and chromosome N50 of 1.60 Mb and 2.81 Gb, respectively. The large size of the lungfish genome is due mainly to retrotransposons. Genes with ultra-long length show similar expression levels to other genes, indicating that lungfishes have evolved high transcription efficacy to keep gene expression balanced. Together with transcriptome and experimental data, we identified potential genes and regulatory elements related to such terrestrial adaptation traits as pulmonary surfactant, anxiolytic ability, pentadactyl limbs, and pharyngeal remodeling. Our results provide insights and key resources for understanding the evolutionary pathway leading from fishes to humans.


Assuntos
Adaptação Biológica , Evolução Biológica , Peixes/genética , Sequenciamento Completo do Genoma , Nadadeiras de Animais/anatomia & histologia , Nadadeiras de Animais/fisiologia , Animais , Extremidades/anatomia & histologia , Extremidades/fisiologia , Peixes/anatomia & histologia , Peixes/classificação , Peixes/fisiologia , Filogenia , Fenômenos Fisiológicos Respiratórios , Sistema Respiratório/anatomia & histologia , Vertebrados/genética
16.
Genome Biol Evol ; 13(2)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33331875

RESUMO

Cold-water corals (CWCs) are important habitats for creatures in the deep-sea environment, but they have been degraded by anthropogenic activity. So far, no genome for any CWC has been reported. Here, we report a draft genome of Trachythela sp., which represents the first genome of CWCs to date. In total, 56 and 65 Gb of raw reads were generated from Illumina and Nanopore sequencing platforms, respectively. The final assembled genome was 578.26 Mb, which consisted of 396 contigs with a contig N50 of 3.56 Mb, and the genome captured 90.1% of the metazoan Benchmarking Universal Single-Copy Orthologs. We identified 335 Mb (57.88% of the genome) of repetitive elements, which is a higher proportion compared with others in the Cnidarians, along with 35,305 protein-coding genes. We also detected 483 expanded and 51 contracted gene families, and many of them were associated with longevity, ion transposase, heme-binding nicotinamide adenine dinucleotide, and metabolic regulators of transcription. Overall, we believe this genome will serve as an important resource for studies on community protection for CWCs.


Assuntos
Antozoários/genética , Genoma , Animais , Antozoários/classificação , Temperatura Baixa , DNA/química , Ecossistema , Genes , Genômica , Família Multigênica , Oceanos e Mares , Filogenia , Proteínas/genética , Sequências Repetitivas de Ácido Nucleico
17.
Gigascience ; 9(8)2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32810278

RESUMO

BACKGROUND: With more than 30,000 species, fish-including bony, jawless, and cartilaginous fish-are the largest vertebrate group, and include some of the earliest vertebrates. Despite their critical roles in many ecosystems and human society, fish genomics lags behind work on birds and mammals. This severely limits our understanding of evolution and hinders progress on the conservation and sustainable utilization of fish. RESULTS: Here, we announce the Fish10K project, a portion of the Earth BioGenome Project aiming to sequence 10,000 representative fish genomes in a systematic fashion within 10 years, and we officially welcome collaborators to join this effort. As a step towards this goal, we herein describe a feasible workflow for the procurement and storage of biospecimens, as well as sequencing and assembly strategies. CONCLUSIONS: To illustrate, we present the genomes of 10 fish species from a cohort of 93 species chosen for technology development.


Assuntos
Ecossistema , Genoma , Animais , Peixes/genética , Genômica , Humanos , Vertebrados/genética
18.
Genomics ; 112(6): 4316-4321, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32712293

RESUMO

Genomic data can improve our understanding on the phylogenetic relationship among Tibetan highland fishes. The whole mitochondrial genome of Gymnocypris eckloni generated in this study is 16,784 bp in length, containing 22 transfer RNA genes, 13 protein-coding genes, two ribosomal RNA genes, and one non-coding control region (D-Loop). Phylogenetic analysis recovers a non-monophyetic population of G. eckloni in the Qaidam basin, representing two distinct lineages designated 'Qiadam A' and 'Qaidam B', within Qaidam A clustering with Chuanchia labiosa and Schizopygopisis pylzovi captured in the Yellow River and Qaidam B grouping with G. eckloni from the Yellow River. Our research may helpful to further reconsideration of clearer taxonomy and improvement of biodiversity conservation strategy of Tibetan highland fishes.


Assuntos
Carpas/genética , Genoma Mitocondrial , Animais , Carpas/classificação , China , Uso do Códon , Filogenia , Rios
19.
Zool Res ; 41(4): 465-470, 2020 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-32543793

RESUMO

A new species of Tibetan loach, Triplophysa weiheensis sp. nov., is described from the Weihe River in Gansu Province, China, based on morphological and molecular analyses. The new species can be distinguished from all known congeners by a unique combination of the following characters: scaleless; snout abruptly sloping downward, anterior to anterior nostril; lower jaw crescentic, not sharp; body without obvious mottling; lateral line interrupted on posterior trunk at pelvic-fin distal extremity; caudal-peduncle length 2.0-2.7 times its depth; branched rays of pectoral fin 10-11; branched rays of pelvic fin 5-6; inner gill rakers on 1 st gill arch 14-16; vertebrae 4+34-36; intestine with 6-7 loops, length ca. 1.8 times SL ( n=3); bony capsule of air bladder small and thin; posterior chamber of air bladder absent.


Assuntos
Cipriniformes/classificação , Animais , China , Cipriniformes/anatomia & histologia , Cipriniformes/genética , Citocromos b/análise , Feminino , Proteínas de Peixes/análise , Masculino , Filogenia , Rios , Análise de Sequência de DNA/veterinária
20.
Genome Biol Evol ; 12(6): 905-910, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32467969

RESUMO

Cold seeps, characterized by the methane, hydrogen sulfide, and other hydrocarbon chemicals, foster one of the most widespread chemosynthetic ecosystems in deep sea that are densely populated by specialized benthos. However, scarce genomic resources severely limit our knowledge about the origin and adaptation of life in this unique ecosystem. Here, we present a genome of a deep-sea limpet Bathyacmaea lactea, a common species associated with the dominant mussel beds in cold seeps. We yielded 54.6 gigabases (Gb) of Nanopore reads and 77.9-Gb BGI-seq raw reads, respectively. Assembly harvested a 754.3-Mb genome for B. lactea, with 3,720 contigs and a contig N50 of 1.57 Mb, covering 94.3% of metazoan Benchmarking Universal Single-Copy Orthologs. In total, 23,574 protein-coding genes and 463.4 Mb of repetitive elements were identified. We analyzed the phylogenetic position, substitution rate, demographic history, and TE activity of B. lactea. We also identified 80 expanded gene families and 87 rapidly evolving Gene Ontology categories in the B. lactea genome. Many of these genes were associated with heterocyclic compound metabolism, membrane-bounded organelle, metal ion binding, and nitrogen and phosphorus metabolism. The high-quality assembly and in-depth characterization suggest the B. lactea genome will serve as an essential resource for understanding the origin and adaptation of life in the cold seeps.


Assuntos
Ambientes Extremos , Gastrópodes/genética , Genoma , Animais , Evolução Molecular , Família Multigênica , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA