RESUMO
Electrochemical nitrate reduction to ammonia (ENRA) is gaining attention for its potential in water remediation and sustainable ammonia production, offering a greener alternative to the energy-intensive Haber-Bosch process. Current research on ENRA is dedicated to enhancing ammonia selectively and productivity with sophisticated catalysts. However, the performance of ENRA and the change of catalytic activity in more complicated solutions (i.e., nitrate-polluted groundwater) are poorly understood. Here we first explored the influence of Ca2+ and bicarbonate on ENRA using commercial cathodes. We found that the catalytic activity of used Ni or Cu foam cathodes significantly outperforms their pristine ones due to the in situ evolution of new catalytic species on used cathodes during ENRA. In contrast, the nitrate conversion performance with nonactive Ti or Sn cathode is less affected by Ca2+ or bicarbonate because of their original poor activity. In addition, the coexistence of Ca2+ and bicarbonate inhibits nitrate conversion by forming scales (CaCO3) on the in situ-formed active sites. Likewise, ENRA is prone to fast performance deterioration in treating actual groundwater over continuous flow operation due to the presence of hardness ions and possible organic substances that quickly block the active sites toward nitrate reduction. Our work suggests that more work is required to ensure the long-term stability of ENRA in treating natural nitrate-polluted water bodies and to leverage the environmental relevance of ENRA in more realistic conditions.
RESUMO
The electrochemical treatment of saline wastewater is prone to the formation of inorganic chlorinated byproducts, being a significant challenge for this technology. In this study, we introduce an electrooxidation system utilizing a self-supporting nitrogen-doped carbon-based cathode embedded in carbon cloth (N@C-CC), designed to generate H2O2. This system aims to rapidly neutralize free chlorine produced at the anode, a precursor to inorganic chlorinated byproducts, thereby reducing their formation. Our results demonstrate that using the N@C-CC cathode in saline wastewater treatment yielded considerably lower concentrations of ClO3â» and ClO4â» (0.08 mM and 0.024 mM, respectively), which were only 20.5% and 22.7% of the levels produced using a Pt cathode without H2O2 generation. Moreover, the presence of cathodically generated H2O2 that quenches free chlorine did not significantly impact the degradation performance of phenol. Electron paramagnetic resonance tests and quenching experiments indicated that 1O2 was primarily responsible for phenol removal. Validation with real wastewater demonstrated reductions of 68.6% and 56.3% in ClO3- and ClO4- concentrations, respectively, while effectively removing other pollutants. This study thus offers a compelling method for mitigating the formation of inorganic chlorinated byproducts during the electrooxidation of saline wastewater.
RESUMO
Acid mine drainage (AMD) raises a global environmental concern impacting the iron cycle. Although the formation of Fe(III) minerals in AMD-impacted waters has previously been reported to be regulated by biological processes, the role of abiotic processes remains largely unknown. This study first reported that a photochemical reaction coupled with O2 significantly accelerated the formation of Fe(III) flocculates (i.e., schwertmannite) in the AMD, as evidenced by the comparison of samples from contaminated sites across different natural conditions at latitudes 24-29° N. Combined with experimental and modeling results, it is further discovered that the intramolecular oxidation of photogenerated Fe(II) with a five-coordinative pyramidal configuration (i.e., [(H2O)5Fe]2+) by O2 was the key in enhancing the photooxidation of Fe(II) in the simulated AMD. The in situ attenuated total reflectance-Fourier transform infrared spectrometry (ATR-FTIR), UV-vis spectroscopy, solvent substitution, and quantum yield analyses indicated that, acting as a precursor for flocculation, [(H2O)5Fe]2+ likely originated from both the dissolved and colloidal forms of Fe(III) through homogeneous and surface ligand-to-metal charge transfers. Density functional theory calculations and X-ray absorption spectroscopy results further suggested that the specific oxidation pathways of Fe(II) produced the highly reactive iron species and triggered the hydrolysis and formation of transient dihydroxo dimers. The proposed new pathways of Fe cycle are crucial in controlling the mobility of heavy metal anions in acidic waters and enhance the understanding of complicated iron biochemistry that is related to the fate of contaminants and nutrients.
RESUMO
Background: Guillain-Barré syndrome (GBS) is a polyradiculoneuropathy mediated by the immune system and is the primary reason for acute flaccid paralysis. Intravenous immunoglobulin (IVIg) is a recognized immunotherapeutic drug that can accelerate recovery from GBS. Limited literature exists concerning cerebral infarction complications with IVIg following its use in the treatment of GBS. Case presentation: A patient was diagnosed with the acute inflammatory demyelinating polyradiculoneuropathy subtype of GBS, while another patient was diagnosed with the acute bulbar palsy variant of GBS 2 years prior and experienced a relapse of GBS. Both patients received immunoglobulin therapy, during which multiple acute cerebral infarctions were detected using magnetic resonance imaging. Both patients had a history of coronary artery atherosclerotic heart disease and vertebral artery stenosis, and D-dimer and fibrinogen degradation products were significantly elevated after immunoglobulin therapy. Conclusions: The risk of cerebral infarction associated with IVIg is generally low in patients with different GBS variants. Nevertheless, the occurrence of cerebral infarction associated with IVIg might not be insignificant in older patients with vascular risk factors and should be carefully monitored.
Assuntos
Infarto Cerebral , Síndrome de Guillain-Barré , Imunoglobulinas Intravenosas , Humanos , Imunoglobulinas Intravenosas/uso terapêutico , Imunoglobulinas Intravenosas/efeitos adversos , Imunoglobulinas Intravenosas/administração & dosagem , Infarto Cerebral/etiologia , Infarto Cerebral/diagnóstico por imagem , Síndrome de Guillain-Barré/imunologia , Síndrome de Guillain-Barré/diagnóstico , Síndrome de Guillain-Barré/terapia , Masculino , Idoso , Feminino , Pessoa de Meia-Idade , Imageamento por Ressonância MagnéticaRESUMO
The presence and induced secondary reactions of natural organic matter (NOM) significantly affect the remediation efficacy of in situ chemical oxidation (ISCO) systems. However, it remains unclear how this process relates to organic radicals generated from reactions between the NOM and oxidants. The study, for the first time, reported the vital roles and transformation pathways of carbon-centered radicals (CCRâ¢) derived from NOM in activated persulfate (PS) systems. Results showed that both typical terrestrial/aquatic NOM isolates and collected NOM samples produced CCR⢠by scavenging activated PS and greatly enhanced the dehalogenation performance under anoxic conditions. Under oxic conditions, newly formed CCR⢠could be oxidized by O2 and generate organic peroxide intermediates (ROOâ¢) to catalytically yield additional â¢OH without the involvement of PS. Nuclear magnetic resonance (NMR) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) results indicated that CCR⢠predominantly formed from carboxyl and aliphatic structures instead of aromatics within NOM through hydrogen abstraction and decarboxylation reactions by SO4â¢- or â¢OH. Specific anoxic reactions (i.e., dehalogenation and intramolecular cross-coupling reactions) further promoted the transformation of CCR⢠to more unsaturated and polymerized/condensed compounds. In contrast, oxic propagation of ROO⢠enhanced bond breakage/ring cleavage and degradation of CCR⢠due to the presence of additional â¢OH and self-decomposition. This study provides novel insights into the role of NOM and O2 in ISCO and the development of engineered strategies for creating organic radicals capable of enhancing the remediation of specific contaminants and recovering organic carbon.
Assuntos
Carbono , Carbono/química , Oxirredução , Sulfatos/químicaRESUMO
The energy efficiency identification of machining process plays an indispensable part in achieving energy-efficient manufacturing and improving energy utilization as well as productivity and surface quality. However, there is a great difficulty to track energy efficiency in real-time based on one kind of traditional power signal. Because energy consumption is affected by many factors such as machine tool current performance, tool wear conditions and cutting parameters selection. This paper puts forward an energy efficiency recognition method as well as surface roughness prediction model based on the cutting force signals. The CEEMDAN (Complete Ensemble Empirical Mode Decomposition with Adaptive Noise) algorithm is employed to decompose the cutting force signal into multiple IMF (intrinsic mode function) components; and characterization of energy efficiency of machining process is recognized through proportion of components based on PCA-Fast ICA algorithm. Then, a surface roughness prediction model is proposed using support vector regression (SVR) based on specific cutting energy consumption (SCEC). The orthogonal test is designed considering spindle speed, feed rate, depth of cutting and width of cutting in 3 levels to obtain the influence degree of cutting parameters on cutting force, specific energy consumption, and the surface roughness. The energy efficiency of 27 group experiments is classified into high, medium and low levels according to energy efficiency value. Finally, using the data of orthogonal test, energy efficiency state was identified. The result show that time-frequency of cutting force signals for high, medium and low energy efficiency could be extracted, and the average absolute error of surface roughness predict is 0.058. That illustrated that the proposed method could meet the industry requirement for energy efficiency monitoring and surface roughness prediction to achieve sustainable manufacturing.
RESUMO
Iron minerals in nature are pivotal hosts for heavy metals, significantly influencing their geochemical cycling and eventual fate. It is generally accepted that, vivianite, a prevalent iron phosphate mineral in aquatic and terrestrial environments, exhibits a limited capacity for adsorbing cationic heavy metals. However, our study unveils a remarkable phenomenon that the synergistic interaction between sulfide (S2-) and vivianite triggers an unexpected sulfidation-reoxidation process, enhancing the immobilization of heavy metals such as cadmium (Cd), copper (Cu), and zinc (Zn). For instance, the combination of vivianite and S2- boosted the removal of Cd2+ from the aqueous phase under anaerobic conditions, and ensured the retention of Cd stabilized in the solid phase when shifted to aerobic conditions. It is intriguing to note that no discrete FeS formation was detected in the sulfidation phase, and the primary crystal structure of vivianite largely retained its integrity throughout the whole process. Detailed molecular-level investigations indicate that sulfidation predominantly targets the Fe(II) sites at the corners of the PO4 tetrahedron in vivianite. With the transition to aerobic conditions, the exothermic oxidation of CdS and the S sites in vivianite initiates, rendering it thermodynamically favorable for Cd to form multidentate coordination structures, predominantly through the Cd-O-P and Cd-O-Fe bonds. This mechanism elucidates how Cd is incorporated into the vivianite structure, highlighting a novel pathway for heavy metal immobilization via the sulfidation-reoxidation dynamics in iron phosphate minerals.
Assuntos
Metais Pesados , Oxirredução , Metais Pesados/química , Sulfetos/química , Poluentes Químicos da Água/química , Fosfatos/química , Minerais/química , Ferro/química , AdsorçãoRESUMO
Electrode scaling poses a critical barrier to the adoption of electrochemical processes in wastewater treatment, primarily due to electrode inactivation and increased internal reactor resistance. We introduce an antiscaling strategy using tip-enhanced electric fields to redirect scale-forming compounds (e.g., Mg(OH)2 and CaCO3) from the electrode-electrolyte interface to the bulk solution. Our study utilized Cu nanowires (Cu NW) with high-curvature nanostructures as the cathode, in contrast to Cu nanoparticles (Cu NP), Cu foil (CF), and Cu mesh (CM), to evaluate the electrochemical nitrate reduction reaction (NO3RR) performance in hard water conditions. The Cu NW/CF cathode demonstrated superior NO3RR efficiency, with an apparent rate constant (Kapp) of 1.04 h-1, significantly outperforming control electrodes under identical conditions (Kapp < 0.051 h-1). Through experimental and theoretical analysis, including COMSOL simulations, we show that the high-curvature design of Cu NW induced localized electric field enhancements, propelling OH- ions away from the electrode surface into the bulk solution, thus mitigating scale formation on the cathode. Testing with real nitrate-contaminated wastewater confirms that the Cu NW/CF cathode maintained excellent denitrification efficiency over a 60-day period. This study offers a promising perspective on preventing electrode scaling in electrochemical wastewater treatment, paving the way for more efficient and sustainable practices.
Assuntos
Eletrodos , Águas Residuárias , Águas Residuárias/química , Cobre/química , Purificação da Água/métodos , Nitratos/químicaRESUMO
Electrochemical advanced oxidation processes (EAOPs) have shown great promise for treating industrial wastewater contaminated with phenolic compounds. However, the presence of chloride in the wastewater leads to the production of undesirable chlorinated organic and inorganic byproducts, limiting the application of EAOPs. To address this challenge, we investigated the potential of incorporating Fe(II) and Fe(III) into the EAOPs with a boron-doped diamond (BDD) anode under near-neutral conditions. Our findings revealed that both Fe(II) and Fe(III) facilitated the generation of high-valent iron-oxo species (Fe(IV) and Fe(V)) in the anodic compartment, thereby reducing the oxidation contribution of reactive chlorine species. Remarkably, the addition of 1000 µM Fe(II) under high chloride conditions resulted in over a 2.8-fold increase in the oxidation rate of 50 µM phenolic contaminants at pH 6.5. Furthermore, 1000 µM Fe(II) contributed to a reduction of more than 66% in the formation of chlorinated byproducts, consequently enhancing the biodegradability of the treated water. Additionally, transitioning from batch mode to continuous flow mode further amplified the positive effects of Fe(II) on the EAOPs. Overall, this study presents a modified electrochemical approach that simultaneously enhanced the degradation of phenolic contaminants and improved the biodegradability of wastewater with high chloride concentrations.
Assuntos
Cloretos , Técnicas Eletroquímicas , Ferro , Oxirredução , Fenóis , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Fenóis/química , Cloretos/química , Ferro/química , Poluentes Químicos da Água/química , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Eletrodos , Boro/químicaRESUMO
Advanced oxidation processes (AOPs) are the most efficient water cleaning technologies, but their applications face critical challenges in terms of mass/electron transfer limitations and catalyst loss/deactivation. Bipolar electrochemistry (BPE) is a wireless technique that is promising for energy and environmental applications. However, the synergy between AOPs and BPE has not been explored. In this study, by combining BPE with AOPs, we develop a general approach of using carbon nanotubes (CNTs) as electric-field-induced bipolar electrodes to control electron transfer for efficient water purification. This approach can be used for permanganate and peroxide activation, with superior performances in the degradation of refractory organic pollutants and excellent durability in recycling and scale-up experiments. Theoretical calculations, in situ measurements, and physical experiments showed that an electric field could substantially reduce the energy barrier of electron transfer over CNTs and induce them to produce bipolar electrodes via electrochemical polarization or to form monopolar electrodes through a single particle collision effect with feeding electrodes. This approach can continuously provide activated electrons from one pole of bipolar electrodes and simultaneously achieve "self-cleaning" of catalysts through CNT-mediated direct oxidation from another pole of bipolar electrodes. This study provides a fundamental scientific understanding of BPE, expands its scope in the environmental field, and offers a general methodology for water purification.
Assuntos
Eletrodos , Nanotubos de Carbono , Oxirredução , Purificação da Água , Nanotubos de Carbono/química , Purificação da Água/métodos , CatáliseRESUMO
The electrochemical technology provides a practical and viable solution to the global water scarcity issue, but it has an inherent challenge of generating toxic halogenated byproducts in treatment of saline wastewater. Our study reveals an unexpected discovery: the presence of a trace amount of Br- not only enhanced the electrochemical oxidation of organic compounds with electron-rich groups but also significantly reduced the formation of halogenated byproducts. For example, in the presence of 20 µM Br-, the oxidation rate of phenol increased from 0.156 to 0.563 min-1, and the concentration of total organic halogen decreased from 59.2 to 8.6 µM. Through probe experiments, direct electron transfer and HO⢠were ruled out as major contributors; transient absorption spectroscopy (TAS) and computational kinetic models revealed that trace Br- triggers a shift in the dominant reactive species from Cl2â¢- to Br2â¢-, which plays a key role in pollutant removal. Both TAS and electron paramagnetic resonance identified signals unique to the phenoxyl and carbon-centered radicals in the Br2â¢--dominated system, indicating distinct reaction mechanisms compared to those involving Cl2â¢-. Kinetic isotope experiments and density functional theory calculations confirmed that the interaction between Br2â¢- and phenolic pollutants follows a hydrogen atom abstraction pathway, whereas Cl2â¢- predominantly engages pollutants through radical adduct formation. These insights significantly enhance our understanding of bromine radical-involved oxidation processes and have crucial implications for optimizing electrochemical treatment systems for saline wastewater.
Assuntos
Águas Residuárias , Águas Residuárias/química , Poluentes Químicos da Água/química , Oxirredução , Halogenação , Técnicas Eletroquímicas , Cinética , Purificação da Água/métodosRESUMO
Electrochemical oxidation (EO) can effectively reduce the degree of humification and toxicity of landfill leachate by generating highly active oxidative species in situ. However, the selective and competitive oxidation of humic acid (HA) and ammonia (NH4+) and the role of different oxidative species during the EO process in complex aqueous conditions remain unclear. In this study, a nanostructured tin-antimony electrode (Ti/Sb-SnO2 NFs) was prepared and compared with three types of commercial electrodes (Ti/Ir-RuO2, Ti4O7, Ti/Sb-SnO2) in terms of electrochemical properties and electrocatalytic oxidation of HA and NH4+. The de-humification capacity, interactive effects of HA and NH4+ on each other's oxidation by different oxidative species, as well as the related oxidation byproducts were investigated. The differences in pollutant electrooxidation among the different electrodes were found to be insignificant. The presence of HA was found to be detrimental to NH4+ degradation while reducing the N2 conversion rate. Interestingly, NH4+ initially inhibited the degradation rates of HA while promoted the degradation and reduced the accumulation of organic chlorine during the later EO process. A proposed mechanism accounts for both competitive and promotional effects for simultaneous HA and NH4+ oxidation during the EO process.
RESUMO
Fluorescence in situ hybridization (FISH) and 16S rRNA gene amplicon sequencing are commonly used for microbial ecological analyses in biological enhanced phosphorus removal (EBPR) systems, the successful application of which was governed by the oligonucleotides used. We performed a systemic evaluation of commonly used probes/primers for known polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs). Most FISH probes showed blind spots and covered nontarget bacterial groups. Ca. Competibacter probes showed promising coverage and specificity. Those for Ca. Accumulibacter are desirable in coverage but targeted out-group bacteria, including Ca. Competibacter, Thauera, Dechlorosoma, and some polyphosphate-accumulating Cyanobacteria. Defluviicoccus probes are good in specificity but poor in coverage. Probes targeting Tetrasphaera or Dechloromonas showed low coverage and specificity. Specifically, DEMEF455, Bet135, and Dech453 for Dechloromonas covered Ca. Accumulibacter. Special attentions are needed when using these probes to resolve the PAO/GAO phenotype of Dechloromonas. Most species-specific probes for Ca. Accumulibacter, Ca. Lutibacillus, Ca. Phosphoribacter, and Tetrasphaera are highly specific. Overall, 1.4% Ca. Accumulibacter, 9.6% Ca. Competibacter, 43.3% Defluviicoccus, and 54.0% Dechloromonas in the MiDAS database were not covered by existing FISH probes. Different 16S rRNA amplicon primer sets showed distinct coverage of known PAOs and GAOs. None of them covered all members. Overall, 520F-802R and 515F-926R showed the most balanced coverage. All primers showed extremely low coverage of Microlunatus (<36.0%), implying their probably overlooked roles in EBPR systems. A clear understanding of the strength and weaknesses of each probe and primer set is a premise for rational evaluation and interpretation of obtained community results.
RESUMO
Electrochemical technology is a promising technique for separating ammonia from mature landfill leachate. However, the accompanying migration and transformation of coexisting pollutants and strategies for further high-value resourceful utilization of ammonia have rarely received attention. In this study, an electrochemical separation-Rhodopseudomonas palustris electrolysis cell coupled system was initially constructed for efficient separation and conversion of nitrogen in mature landfill leachate to microbial protein with synchronously tracking the transport and conversion of coexisting heavy metals accompanying the process. The results revealed that ammonia concentration in the cathode increased from 40.3 to 49.8% with increasing the current density from 20 to 40 mA/cm2, with less than 3% of ammonia transformation to NO2--N and NO3--N. During ammonia separation, approximately 95% of HM-DOMs (Cr, Cu, Ni, Pb, and Zn) were released into the anolyte due to humus degradation and further diffused to the cathode. A significant correlation was observed between the releases of HM-DOMs. Cu-DOMs accounted for 70.2% of the total Cu content, which was the highest proportion among the heavy metals (HMs). Among the HMs in anolyte, 57.4% of Pb, 52.5% of Ni, and 50.6% of Zn diffused to the cathode, and most of the HMs were removed in the form of hydroxide precipitations due to heavy alkaline catholyte. Compared with the open-circuit condition, the utilization efficiency of NH4+-N in the R. palustris electrolysis cell increased by 445.1% with 47% and 50% increases in final NH4+-N conversion rate and R. palustris biomass, respectively, due to bio-electrochemical enhanced phototrophic metabolism and acid generation for buffering the strong alkalinity of the electrolyte to maintain suitable growth conditions for R. palustris.
Assuntos
Amônia , Rodopseudomonas , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Chumbo , Eletrólise , Instalações de Eliminação de Resíduos , NitrogênioRESUMO
Magnetite is a reductive Fe(II)-bearing mineral, and its reduction property is considered important for degradation of contaminants in groundwater and anaerobic subsurface environments. However, the redox condition of subsurface environments frequently changes from anaerobic to aerobic owing to natural and anthropogenic disturbances, generating reactive oxygen species (ROS) from the interaction between Fe(II)-bearing minerals and O2. Despite this, the mechanism of ROS generation induced by magnetite under aerobic conditions is poorly understood, which may play a crucial role in As(III) oxidation. Herein, we found that magnetite could activate O2 and induce the oxidative transformation of As(III) under aerobic conditions. As(III) oxidation was attributed to the ROS generated via structural Fe(II) within the magnetite octahedra oxygenation. The electron paramagnetic resonance and quenching tests confirmed that O2â¢-, H2O2, and â¢OH were produced by magnetite. Moreover, density function theory calculations combined with experiments demonstrated that O2â¢- was initially formed via single electron transfer from the structural Fe(II) to the adsorbed O2; O2â¢- was then converted to â¢OH and H2O2 via a series of free radical reactions. Among them, O2â¢-and H2O2 were the primary ROS responsible for As(III) oxidation, accounting for approximately 52 % and 19 % of As(III) oxidation. Notably, As(III) oxidation mainly occurred on the magnetite surface, and As was immobilized further within the magnetite structure. This study provides solid evidence regarding the role of magnetite in determining the fate and transformation of As in redox-fluctuating subsurface environments.
Assuntos
Óxido Ferroso-Férrico , Oxigênio , Óxido Ferroso-Férrico/química , Espécies Reativas de Oxigênio , Oxigênio/química , Peróxido de Hidrogênio , Oxirredução , Minerais , Compostos Férricos/químicaRESUMO
Mixed metal oxide (MMO) anodes are commonly used for electrochlorination of ammonium (NH4+) in wastewater treatment, but they suffer from low efficiency due to inadequate chlorine generation at low Cl- concentrations and sluggish reaction kinetics between free chlorine and NH4+ under acidic pH conditions. To address this challenge, we develop a straightforward wet chemistry approach to synthesize BiOCl-functionalized MMO electrodes using the MMO as an efficient Ohmic contact for electron transfer. Our study demonstrates that the BiOCl@MMO anode outperforms the pristine MMO anode, exhibiting higher free chlorine generation (24.6-60.0 mg Cl2 L-1), increased Faradaic efficiency (75.5 vs 31.0%), and improved rate constant of NH4+ oxidation (2.41 vs 0.76 mg L-1 min-1) at 50 mM Cl- concentration. Characterization techniques including electron paramagnetic resonance and in situ transient absorption spectra confirm the production of chlorine radicals (Cl⢠and Cl2â¢-) by the BiOCl/MMO anode. Laser flash photolysis reveals significantly higher apparent second-order rate constants ((4.3-4.9) × 106 M-1 s-1 at pH 2.0-4.0) for the reaction between NH4+ and Clâ¢, compared to the undetectable reaction between NH4+ and Cl2â¢-, as well as the slower reaction between NH4+ and free chlorine (102 M-1 s-1 at pH < 4.0) within the same pH range, emphasizing the significance of Cl⢠in enhancing NH4+ oxidation. Mechanistic studies provide compelling evidence of the capacity of BiOCl for Cl- adsorption, facilitating chlorine evolution and Cl⢠generation. Importantly, the BiOCl@MMO anode exhibits excellent long-term stability and high catalytic activity for NH4+-N removal in a real landfill leachate. These findings offer valuable insights into the rational design of electrodes to improve electrocatalytic NH4+ abatement, which holds great promise for wastewater treatment applications.
Assuntos
Compostos de Amônio , Poluentes Químicos da Água , Águas Residuárias , Cloro , Oxirredução , Óxidos/química , Eletrodos , Poluentes Químicos da Água/análise , CloretosRESUMO
Slow charge kinetics and unfavorable CO2 adsorption/activation strongly inhibit CO2 photoreduction. In this study, a strain-engineered Cs3 Bi2 Br9 /hierarchically porous BiVO4 (s-CBB/HP-BVO) heterojunction with improved charge separation and tailored CO2 adsorption/activation capability is developed. Density functional theory calculations suggest that the presence of tensile strain in Cs3 Bi2 Br9 can significantly downshift the p-band center of the active Bi atoms, which enhances the adsorption/activation of inert CO2 . Meanwhile, in situ irradiation X-ray photoelectron spectroscopy and electron spin resonance confirm that efficient charge transfer occurs in s-CBB/HP-BVO following an S-scheme with built-in electric field acceleration. Therefore, the well-designed s-CBB/HP-BVO heterojunction exhibits a boosted photocatalytic activity, with a total electron consumption rate of 70.63 µmol g-1 h-1 , and 79.66% selectivity of CO production. Additionally, in situ diffuse reflectance infrared Fourier transform spectroscopy reveals that CO2 photoreduction undergoes a formaldehyde-mediated reaction process. This work provides insight into strain engineering to improve the photocatalytic performance of halide perovskite.
RESUMO
The development of magnetic adsorbents with high capacity to capture heavy metals has been the subject of intense research, but the process usually involves costive synthesis steps. Here, we propose a green approach to obtaining a magnetic biohybrid through in situ grown anaerobic granular sludge (AGS) with the help of magnetite, constituting a promising adsorbent for sequestration and immobilization of Pb in aqueous solutions and soils. The resultant magnetite-embedded AGS (M-AGS) was not only capable of promoting methane production but also conducive to Pb adsorption because of the large surface area and abundant function groups. The uptake of Pb on M-AGS followed the pseudo-second order, having a maximum adsorption capacity of 197.8 mg gDS-1 at pH 5.0, larger than 159.7, 170.3, and 178.1 mg gDS-1 in relation to AGS, F-AGS (ferrihydrite-mediated), and H-AGS (hematite-mediated), respectively. Mechanistic investigations showed that Pb binding to M-AGS proceeds via surface complexation, mineral precipitation, and lattice replacement, which promotes heavy metal capture and stabilization. This was evident from the increased proportion of structural Pb sequestrated from the aqueous solution and the enhanced percentage of the residual fraction of Pb extracted from the contaminated soils.
Assuntos
Metais Pesados , Esgotos , Chumbo , Anaerobiose , Óxido Ferroso-Férrico , Metais Pesados/química , Adsorção , Solo , Fenômenos MagnéticosRESUMO
Fenton iron mud (IM) is a hazardous solid waste produced by Fenton oxidation technology after treating industrial wastewater. Thus, it is necessary and challenging to develop a recycling technology to back-convert dangerous materials into useful products. Herein, we develop a sustainable approach to prepare highly active metal oxides via a solid-state grinding method. IM, as an amorphous material, can disperse and interact well with these supported metal oxides, boosting toluene degradation significantly. Among these IM-based catalysts, the catalyst 8% MnOx/IM-0.2VC exhibits the best performance (T100 = 290 °C), originating from the oxide-support interaction and optimal balance between low-temperature reducibility and oxygen vacancy concentration. In addition, in situ diffuse reflectance infrared Fourier transform spectrometry (DRIFTS) results expound that ring breakage is prone to occur on MnOx, and oxygen vacancies are beneficial to adsorb oxygen and activate oxygen species to boost toluene oxidation following the Mars-van Krevelen mechanism. This work advances a complete industrial hazardous waste recycling route to develop extremely active catalysts.
RESUMO
The increasing need for sustainable acid mine drainage (AMD) treatment has spurred much attention to strategic development of resource recovery. Along this line, we envisage that a coupled electrochemical system involving anodic Fe(II) oxidation and cathodic alkaline production will facilitate in situ synthesis of schwertmannite from AMD. Multiple physicochemical studies showed the successful formation of electrochemistry-induced schwertmannite, with its surface structure and chemical composition closely related to the applied current. A low current (e.g., 50 mA) led to the formation of schwertmannite having a small specific surface area (SSA) of 122.8 m2 g-1 and containing small amounts of -OH groups (formula Fe8O8(OH)4.49(SO4)1.76), whereas a large current (e.g., 200 mA) led to schwertmannite high in SSA (169.5 m2 g-1) and amounts of -OH groups (formula Fe8O8(OH)5.16(SO4)1.42). Mechanistic studies revealed that the reactive oxygen species (ROS)-mediated pathway, rather than the direct oxidation pathway, plays a dominant role in accelerating Fe(II) oxidation, especially at high currents. The abundance of â¢OH in the bulk solution, along with the cathodic production of OH-, were the key to obtaining schwertmannite with desirable properties. It was also found to function as a powerful sorbent in removal of arsenic species from the aqueous phase.