Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Sensors (Basel) ; 21(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34640891

RESUMO

To construct circular barrier coverage (CBC) with multistatic radars, a deployment optimization method based on equipartition strategy is proposed in this paper. In the method, the whole circular area is divided into several sub-circles with equal width, and each sub-circle is blanketed by a sub-CBC that is built based on the multistatic radar deployment patterns. To determine the optimal deployment patterns for each sub-CBC, the optimization conditions are firstly studied. Then, to optimize the deployment of the whole circular area, a model based on minimum deployment cost is proposed, and the proposed model is divided into two sub-models to solve the optimization issue. In the inner model, it is assumed that the width of a sub-circle is given. Based on the optimization conditions of the deployment pattern, integer linear programming (ILP) and exhaustive method (EM) are jointly adopted to determine the types and numbers of deployment patterns. Moreover, a modified formula is introduced to calculate the maximum valid number of receivers in a pattern, thus narrowing the search scope of the EM. In the outer model, the width of a sub-circle is assumed to be a variable, and the EM is adopted to determine the minimum total deployment cost and the optimal deployment patterns on each sub-circle. Moreover, the improved formula is exploited to determine the range of width for a sub-circle barrier and reduce the search scope of the EM. Finally, simulations are conducted in different conditions to verify the effectiveness of the proposed method. The simulation results indicate that the proposed method can spend less deployment cost and deploy fewer transmitters than the state-of-the-artwork.

2.
Sensors (Basel) ; 20(17)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847071

RESUMO

High-dimensional signals, such as image signals and audio signals, usually have a sparse or low-dimensional manifold structure, which can be projected into a low-dimensional subspace to improve the efficiency and effectiveness of data processing. In this paper, we propose a linear dimensionality reduction method-minimum eigenvector collaborative representation discriminant projection-to address high-dimensional feature extraction problems. On the one hand, unlike the existing collaborative representation method, we use the eigenvector corresponding to the smallest non-zero eigenvalue of the sample covariance matrix to reduce the error of collaborative representation. On the other hand, we maintain the collaborative representation relationship of samples in the projection subspace to enhance the discriminability of the extracted features. Also, the between-class scatter of the reconstructed samples is used to improve the robustness of the projection space. The experimental results on the COIL-20 image object database, ORL, and FERET face databases, as well as Isolet database demonstrate the effectiveness of the proposed method, especially in low dimensions and small training sample size.

3.
Sensors (Basel) ; 20(11)2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32517316

RESUMO

The nonrigid point set registration is one of the bottlenecks and has the wide applications in computer vision, pattern recognition, image fusion, video processing, and so on. In a nonrigid point set registration problem, finding the point-to-point correspondences is challengeable because of the various image degradations. In this paper, a robust method is proposed to accurately determine the correspondences by fusing the two complementary structural features, including the spatial location of a point and the local structure around it. The former is used to define the absolute distance (AD), and the latter is exploited to define the relative distance (RD). The AD-correspondences and the RD-correspondences can be established based on AD and RD, respectively. The neighboring corresponding consistency is employed to assign the confidence for each RD-correspondence. The proposed heuristic method combines the AD-correspondences and the RD-correspondences to determine the corresponding relationship between two point sets, which can significantly improve the corresponding accuracy. Subsequently, the thin plate spline (TPS) is employed as the transformation function. At each step, the closed-form solutions of the affine and nonaffine parts of TPS can be independently and robustly solved. It facilitates to analyze and control the registration process. Experimental results demonstrate that our method can achieve better performance than several existing state-of-the-art methods.

4.
IEEE Trans Neural Netw Learn Syst ; 25(4): 677-89, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24807946

RESUMO

This paper addresses the problem of adaptive source extraction via the canonical correlation analysis (CCA) approach. Based on Liu's analysis of CCA approach, we propose a new criterion for source extraction, which is proved to be equivalent to the CCA criterion. Then, a fast and efficient online algorithm using quasi-Newton iteration is developed. The stability of the algorithm is also analyzed using Lyapunov's method, which shows that the proposed algorithm asymptotically converges to the global minimum of the criterion. Simulation results are presented to prove our theoretical analysis and demonstrate the merits of the proposed algorithm in terms of convergence speed and successful rate for source extraction.

5.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(1): 278-82, 2012 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-22497176

RESUMO

The key innovation in Hadamard transform spectral imager (HTSI) introduced recently is the use of digital micro-mirror device (DMD) to encode spectral information. However, it brings some new problems for us to solve synchronously. An interlaced encoding phenomenon caused by the application of DMD to our HTSI was investigated and analyzed. These interlaced encoding pixels were not encoded based on Hadamard transform; therefore they should be processed specially in spectrum recovery. To improve the quality of the recovered spectral images, a positioning method and a decoding method for the interlaced encoding pixels were proposed. In our experiment, we first directed a beam of laser into our HTSI to fill the field of view and labeled the positions of the interlaced encoding pixels. Then we recorded two groups of the encoded images of the target by changing the positions of all the encoding channels on the DMD. The interlaced encoding pixels could be distinguished easily by observing the number of non-zero constants and zero elements in a column vector which is made up of the gray values of a pixel of the encoded images in sequence. The interlaced encoding pixels of the first group of the encoded images turned into the normal Hadamard encoding pixels of the second group of the encoded images. The interlaced encoding pixels of the first group of the encoded images can be decoded through applying inverse Hadamard transform to the corresponding pixels of the second group of the encoded images. The experimental results prove the feasibility of the decoding method.

6.
Neural Comput ; 21(3): 872-89, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18928362

RESUMO

We propose an adaptive improved natural gradient algorithm for blind separation of independent sources. First, inspired by the well-known backpropagation algorithm, we incorporate a momentum term into the natural gradient learning process to accelerate the convergence rate and improve the stability. Then an estimation function for the adaptation of the separation model is obtained to adaptively control a step-size parameter and a momentum factor. The proposed natural gradient algorithm with variable step-size parameter and variable momentum factor is therefore particularly well suited to blind source separation in a time-varying environment, such as an abruptly changing mixing matrix or signal power. The expected improvement in the convergence speed, stability, and tracking ability of the proposed algorithm is demonstrated by extensive simulation results in both time-invariant and time-varying environments. The ability of the proposed algorithm to separate extremely weak or badly scaled sources is also verified. In addition, simulation results show that the proposed algorithm is suitable for separating mixtures of many sources (e.g., the number of sources is 10) in the complete case.


Assuntos
Adaptação Fisiológica , Algoritmos , Aprendizagem/fisiologia , Processamento de Sinais Assistido por Computador , Retroalimentação , Humanos , Fatores de Tempo
7.
IEEE Trans Neural Netw ; 16(3): 513-21, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15940982

RESUMO

A novel random-gradient-based algorithm is developed for online tracking the minor component (MC) associated with the smallest eigenvalue of the autocorrelation matrix of the input vector sequence. The five available learning algorithms for tracking one MC are extended to those for tracking multiple MCs or the minor subspace (MS). In order to overcome the dynamical divergence properties of some available random-gradient-based algorithms, we propose a modification of the Oja-type algorithms, called OJAm, which can work satisfactorily. The averaging differential equation and the energy function associated with the OJAm are given. It is shown that the averaging differential equation will globally asymptotically converge to an invariance set. The corresponding energy or Lyapunov functions exhibit a unique global minimum attained if and only if its state matrices span the MS of the autocorrelation matrix of a vector data stream. The other stationary points are saddle (unstable) points. The globally convergence of OJAm is also studied. The OJAm provides an efficient online learning for tracking the MS. It can track an orthonormal basis of the MS while the other five available algorithms cannot track any orthonormal basis of the MS. The performances of the relative algorithms are shown via computer simulations.


Assuntos
Algoritmos , Modelos Lineares , Redes Neurais de Computação , Análise Numérica Assistida por Computador , Reconhecimento Automatizado de Padrão/métodos , Processamento de Sinais Assistido por Computador , Simulação por Computador , Processos Estocásticos
8.
IEEE Trans Neural Netw ; 15(6): 1541-54, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15565780

RESUMO

This paper proposes a novel cross-correlation neural network (CNN) model for finding the principal singular subspace of a cross-correlation matrix between two high-dimensional data streams. We introduce a novel nonquadratic criterion (NQC) for searching the optimum weights of two linear neural networks (LNN). The NQC exhibits a single global minimum attained if and only if the weight matrices of the left and right neural networks span the left and right principal singular subspace of a cross-correlation matrix, respectively. The other stationary points of the NQC are (unstable) saddle points. We develop an adaptive algorithm based on the NQC for tracking the principal singular subspace of a cross-correlation matrix between two high-dimensional vector sequences. The NQC algorithm provides a fast online learning of the optimum weights for two LNN. The global asymptotic stability of the NQC algorithm is analyzed. The NQC algorithm has several key advantages such as faster convergence, which is illustrated through simulations.


Assuntos
Algoritmos , Retroalimentação , Armazenamento e Recuperação da Informação/métodos , Redes Neurais de Computação , Reconhecimento Automatizado de Padrão/métodos , Processamento de Sinais Assistido por Computador , Estatística como Assunto , Inteligência Artificial , Simulação por Computador , Modelos Estatísticos , Análise Numérica Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA