Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 349: 123959, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608855

RESUMO

The worldwide prevalence of obesity highlights the potential contribution of endocrine-disrupting chemicals (EDCs). However, common epidemiological measures such as body mass index and waist circumference may misrepresent the intricate obesity risks these chemicals pose across genders. This study delves deeper into abdominal fat by differentiating between subcutaneous and visceral regions by analyzing data from National Health and Nutrition Examination Surveys (NHANES). We particularly investigated the gender-specific associations between organophosphorus flame-retardant metabolites (mOPFRs), phthalates (mPAEs) and accumulated fat indexes from 2536 people. Aiding by Bayesian Kernel Machine Regression (BKMR), we found while co-exposure to mOPFRs and mPAEs was linked to general and abdominal obesity across the entire and gender-specific populations, a gender-specific fat distribution emerged. For women, urinary BDCPP and MBzP were linked to an increased subcutaneous fat index (SFI) [BDCPP OR: 1.12 (95% CI: 1.03-1.21), MBzP OR: 1.09 (95% CI: 1.01-1.18)], but not to visceral fat index (VFI). These metabolites had a combined linkage with SFI, with BDCPP (weighting 22.0%) and DPHP (weighting 31.0%) being the most influential in Quantile g-computation model (qgcomp) model. In men, BCEP exposure exclusively associated with the elevated VFI [OR: 1.14 (95% CI: 1.03-1.26)], a trend further highlighted in mixture models with BCEP as the predominant association. Intriguingly, only males displayed a marked correlation between these metabolites and insulin resistance in subpopulation. An attempted mediation analysis revealed that elevated C-reactive protein mediated 12.1% of the association between urinary BCEP and insulin resistance, suggesting a potential role of inflammation. In conclusion, the gender-specific fat distribution and insulin resistance that associated with mOPFRs represented the potential risk of these chemicals to man.


Assuntos
Exposição Ambiental , Resistência à Insulina , Ácidos Ftálicos , Humanos , Feminino , Masculino , Ácidos Ftálicos/metabolismo , Adulto , Pessoa de Meia-Idade , Exposição Ambiental/estatística & dados numéricos , Disruptores Endócrinos/metabolismo , Organofosfatos/metabolismo , Gordura Abdominal/metabolismo , Poluentes Ambientais/metabolismo , Ésteres/metabolismo , Retardadores de Chama/metabolismo , Adulto Jovem , Inquéritos Nutricionais , Fatores Sexuais
2.
Environ Int ; 178: 108088, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37429055

RESUMO

Convergent evidence links traditional brominated flame retardants (BFRs) exposure to weight gain, while the obesogenic potency of new BFRs (NBFRs) remain largely unknown. Aiding by luciferase-reporter gene assay, the present study revealed only pentabromoethylbenzene (PBEB), an alternative for penta-BDEs, binds with retinoid X receptor α (RXRα) but not peroxisomeproliferator receptor γ (PPARγ) among the seven testing NBFRs. An apparent induction of adipogenesis in 3T3-L1 cells was observed at nanomolar of PBEB, much lower than penta-BFRs. Mechanistic research uncovered PBEB initiated the adipogenesis by demethylated CpG sites in the PPARγ promoter region. Specifically, activation RXRα by PBEB strengthened the activity of RXRα/PPARγ heterodimer, tightened the interaction between the heterodimer and PPAR response elements, and further enhanced adipogenesis. RNA sequencing combined with k-means clustering analysis exposed adenosine 5'-monophosphate (AMP)-activated protein kinase and phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) signaling as two predominant pathways that enriched in PBEB-induced lipogenesis. The obesogenic outcome was further corroborated in offspring mice when the maternal mice exposed to environmental relevant doses of PBEB. We found the male offspring exhibited adipocyte hypertrophy and increased weight gain in the epididymal white adipose tissue (eWAT). Consistent with in vitro findings, the reduction in protein phosphorylation of both AMPK and PI3K/AKT were observed within eWAT. Thus, we posited PBEB disrupts the pathways controlling adipogenesis and adipose tissue maintenance, supporting its potential as an environmental obesogen.


Assuntos
Adipogenia , Proteínas Proto-Oncogênicas c-akt , Masculino , Camundongos , Animais , PPAR gama/genética , PPAR gama/metabolismo , Fosfatidilinositol 3-Quinases , Aumento de Peso
3.
Eur J Pharmacol ; 911: 174522, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34560076

RESUMO

Cynaroside is the primary flavonoid component of honeysuckle which has been widely used as Chinese traditional medicine given its anti-inflammation properties. Overactive systemic inflammatory response and multi-organ injury are the leading causes of life-threatening sepsis. Regulation of macrophage polarization balance may act as a promising strategy for its treatment. In the present study, we aimed to investigate whether cynaroside exerted protective effects against sepsis and its potential mechanism. Building upon a sepsis mouse model, we observed cynaroside alleviated serum levels of inflammatory factors including IL-1ß and TNF-α at 5 and 10 mg/kg. The pathological injury of heart, kidney and lung was remarkedly attenuated as the levels of blood urea nitrogen, creatinine, creatine kinase-MB and lactate dehydrogenase were reduced nearly 2.8-, 2.7-, 2.4-, and 2.5-fold as compared with the sepsis mice, respectively. We further demonstrated cynaroside suppressed the biomarker of pro-inflammatory macrophage M1 phenotype (iNOS+) and promotes the anti-inflammatory M2 polarization (CD206+) in the injury organs of septic mice. Mechanistic research verified cynaroside inhibited LPS-induced polarization of macrophage into M1 phenotype, which can be highly blocked by Nrf2 inhibitor. Expectedly, Nrf2 and its downstream (Heme oxygenase-1 (HO-1)) was upregulated in injury organs after treating with cynaroside, indicating the involvement of Nrf2 signaling. Taken together, the data claims cynaroside ameliorated systematic inflammation and multi-organ injury dependent on Nrf2/HO-1 pathway in septic mice.


Assuntos
Heme Oxigenase-1
4.
Fitoterapia ; 152: 104922, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33984439

RESUMO

The treatment of sepsis is still challenging and the liver is an important target of sepsis-related injury. Macrophages are important innate immune cells in liver, and modulation of macrophages M1/M2 polarization may be a promising strategy for septic liver injury treatment. Macrophage polarization and inflammation of liver tissue has been shown regulated by pyruvate kinase M2 (PKM2)-mediated aerobic glycolysis and immune inflammatory pathways. Therefore, modulating PKM2-mediated immunometabolic reprogramming presents a novel strategy for inflammation-associated diseases. In this study, cynaroside, a flavonoid compound, promoted macrophage phenotypic transition from pro-inflammatory M1 to anti-inflammatory M2, and mitigated sepsis-associated liver inflammatory damage. We established that cynaroside reduced binding of PKM2 to hypoxia-inducible factor-1α (HIF-1α) by abolishing translocation of PKM2 to the nucleus and promoting PKM2 tetramer formation, as well as suppressing phosphorylation of PKM2 at Y105 in vivo and in vitro. Moreover, cynaroside restored pyruvate kinase activity, inhibited glycolysis-related proteins including PFKFB3, HK2 and HIF-1α, and inhibited glycolysis-related hyperacetylation of HMGB1 in septic liver. Therefore, this study reports a novel function of cynaroside in hepatic macrophage polarization, and cecum ligation and puncture-induced liver injury in septic mice. The findings provide crucial information with regard to therapeutic efficacy of cynaroside in the treatment of sepsis.


Assuntos
Glucosídeos/farmacologia , Fígado/lesões , Luteolina/farmacologia , Macrófagos/efeitos dos fármacos , Sepse/tratamento farmacológico , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia , Fígado/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Fosforilação , Piruvato Quinase , Células RAW 264.7
5.
J Food Sci ; 84(12): 3825-3832, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31750963

RESUMO

Carpesium abrotanoides L. (CA) is widely used as a medicinal plant in Asia. The biological activities of the extract from the roots of Carpesium abrotanoides L. (PCA) and its major components were analyzed in this study. PCA was separated and identified with mass spectrometry. Furthermore, we sought to elucidate the anticancer activity of PCA and its mechanisms. PCA exerted its anti-breast cancer activity through inhibiting the expression of glycolysis-related genes, such as glucose transporter 1, lactate dehydrogenase A, and hexokinase 2. Moreover, PCA downregulated the expression of pyruvate kinase M2 and altered its cellular translocation. We also demonstrated PCA is an inhibitor of the PKM2/hypoxia-inducible factor-1α axis, indicating that PCA is potentially useful as an anti-breast cancer agent. PRACTICAL APPLICATION: In this study, the extract from roots of Carpesium abrotanoides Linn. (PCA) was shown to have a noticeable anticancer effect against breast cancer in vitro, and PCA exerts the anticancer activity by regulating glucose metabolism and PKM2 expression. These findings indicate that PCA is a promising agent with practical applications in the development of functional food containing Carpesium abrotanoides L. root extracts.


Assuntos
Antineoplásicos/farmacologia , Asteraceae/química , Neoplasias da Mama/metabolismo , Proteínas de Transporte/metabolismo , Glucose/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas de Membrana/metabolismo , Hormônios Tireóideos/metabolismo , Humanos , Células MCF-7 , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Proteínas de Ligação a Hormônio da Tireoide
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA