Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Insect Biochem Mol Biol ; 170: 104130, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734116

RESUMO

Agmatine N-acetyltransferase (AgmNAT), which catalyzes the formation of N-acetylagmatine from acetyl-CoA and agmatine, is a member of the GCN5-related N-acetyltransferase family. So far, knowledge of the physiological roles of AgmNAT in insects is limited. Here, we identified one gene encoding protein homologous to that of Drosophila AgmNAT using sequence information from an activity-verified Drosophila AgmNAT in a BLAST search of the Bactrocera dorsalis genome. We expressed and purified B. dorsalis AgmNAT in Escherichia coli and used the purified enzyme to define the substrate specificity for acyl-CoA and amine substrates. Our application of the screening strategy to BdorAgmNAT led to the identification of agmatine as the best amine substrate for this enzyme, with the highest kcat/Km value. We successfully obtained a BdorAgmNAT knockout strain based on a wild-type strain (WT) using the CRISPR/Cas9 technique. The ovary development of the BdorAgmNAT knockout mutants was delayed for 10 days compared with the WT specimens. Moreover, mutants had a much smaller mature ovary size and laid far fewer eggs than WT. Loss of function of BdorAgmNAT caused by RNAi with mature WT females did not affect their fecundity. These findings indicate that BdorAgmNAT is critical for oogenesis. Our data provide the first evidence for AgmNAT in regulating ovary development.


Assuntos
Acetiltransferases , Ovário , Tephritidae , Animais , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Ovário/enzimologia , Feminino , Tephritidae/genética , Tephritidae/enzimologia , Tephritidae/crescimento & desenvolvimento , Tephritidae/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Agmatina/metabolismo
2.
Insect Mol Biol ; 33(3): 283-292, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38411032

RESUMO

Although the study of many genes and their protein products is limited by the availability of high-quality antibodies, this problem could be solved by fusing a tag/reporter to an endogenous gene using a gene-editing approach. The type II bacterial CRISPR/Cas system has been demonstrated to be an efficient gene-targeting technology for many insects, including the oriental fruit fly Bactrocera dorsalis. However, knocking in, an important editing method of the CRISPR/Cas9 system, has lagged in its application in insects. Here, we describe a highly efficient homology-directed genome editing system for B. dorsalis that incorporates coinjection of embryos with Cas9 protein, guide RNA and a short single-stranded oligodeoxynucleotide donor. This one-step procedure generates flies carrying V5 tag (42 bp) in the BdorTRH gene. In insects, as in other invertebrates and in vertebrates, the neuronal tryptophan hydroxylase (TRH) gene encodes the rate-limiting enzyme for serotonin biosynthesis in the central nervous system. Using V5 monoclonal antibody, the distribution of TRH in B. dorsalis at different developmental stages was uncovered. Our results will facilitate the generation of insects carrying precise DNA inserts in endogenous genes and will lay foundation for the investigation of the neural mechanisms underlying the serotonin-mediated behaviour of B. dorsalis.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Tephritidae , Animais , Tephritidae/genética , Tephritidae/metabolismo , Tephritidae/crescimento & desenvolvimento , Edição de Genes/métodos , Técnicas de Introdução de Genes , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA