Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6783, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880265

RESUMO

Programmable artificial photosynthetic cell is the ultimate goal for mimicking natural photosynthesis, offering tunable product selectivity via reductase selection toward device integration. However, this concept is limited by the capacity of regenerating the multiple cofactors that hold the key to various reductases. Here, we report the design of artificial photosynthetic cells using biotic-abiotic thylakoid-CdTe as hybrid energy modules. The rational integration of thylakoid with CdTe quantum dots substantially enhances the regeneration of bioactive NADPH, NADH and ATP cofactors without external supplements by promoting proton-coupled electron transfer. Particularly, this approach turns thylakoid highly active for NADH regeneration, providing a more versatile platform for programming artificial photosynthetic cells. Such artificial photosynthetic cells can be programmed by coupling with diverse reductases, such as formate dehydrogenase and remodeled nitrogenase for highly selective production of formate or methane, respectively. This work opens an avenue for customizing artificial photosynthetic cells toward multifarious demands for CO2 conversion.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Dióxido de Carbono , NAD , Telúrio , Fotossíntese , Nitrogenase
3.
Theor Appl Genet ; 136(1): 19, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36680595

RESUMO

KEY MESSAGE: Chilling-tolerant QTL gene COG2 encoded an extensin and repressed chilling tolerance by affecting the compositions of cell wall. Rice as a major crop is susceptible to chilling stress. Chilling tolerance is a complex trait controlled by multiple quantitative trait loci (QTLs). Here, we identify a QTL gene, COG2, that negatively regulates cold tolerance at seedling stage in rice. COG2 overexpression transgenic plants are sensitive to cold, whereas knockout transgenic lines enhance chilling tolerance. Natural variation analysis shows that Hap1 is a specific haplotype in japonica/Geng rice and correlates with chilling tolerance. The SNP1 in COG2 promoter is a specific divergency and leads to the difference in the expression level of COG2 between japonica/Geng and indica/Xian cultivars. COG2 encodes a cell wall-localized extensin and affects the compositions of cell wall, including pectin and cellulose, to defense the chilling stress. The results extend the understanding of the adaptation to the environment and provide an editing target for molecular design breeding of cold tolerance in rice.


Assuntos
Oryza , Oryza/metabolismo , Locos de Características Quantitativas , Genes de Plantas , Haplótipos , Parede Celular , Temperatura Baixa
4.
New Phytol ; 229(3): 1635-1649, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33089895

RESUMO

Rice (Oryza sativa) is a short-day (SD) plant originally having strong photoperiod sensitivity (PS), with SDs promoting and long days (LDs) suppressing flowering. Although the evolution of PS in rice has been extensively studied, there are few studies that combine the genetic effects and underlying mechanism of different PS gene combinations with variations in PS. We created a set of isogenic lines among the core PS-flowering genes Hd1, Ghd7 and DTH8 using CRISPR mutagenesis, to systematically dissect their genetic relationships under different day-lengths. We investigated their monogenic, digenic, and trigenic effects on target gene regulation and PS variation. We found that Hd1 and Ghd7 have the primary functions for promoting and repressing flowering, respectively, regardless of day-length. However, under LD conditions, Hd1 promotes Ghd7 expression and is recruited by Ghd7 and/or DTH8 to form repressive complexes that collaboratively suppress the Ehd1-Hd3a/RFT1 pathway to block heading, but under SD conditions Hd1 competes with the complexes to promote Hd3a/RFT1 expression, playing a tradeoff relationship with PS flowering. Natural allelic variations of Hd1, Ghd7 and DTH8 in rice populations have resulted in various PS performances. Our findings reveal that rice PS flowering is controlled by crosstalk of two modules - Hd1-Hd3a/RFT1 in SD conditions and (Hd1/Ghd7/DTH8)-Ehd1-Hd3a/RFT1 in LD conditions - and the divergences of these genes provide the basis for rice adaptation to broad regions.


Assuntos
Oryza , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Fotoperíodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
New Phytol ; 208(3): 936-48, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26096631

RESUMO

Initiation of flowering, also called heading, in rice (Oryza sativa) is determined by the florigens encoded by Heading date 3a (Hd3a) and RICE FLOWERING LOCUS T1 (RFT1). Early heading date 1 (Ehd1) regulates Hd3a and RFT1. However, different rice varieties have diverged alleles of Ehd1 and Hd3a/RFT1 and their genetic interactions remain largely unclear. Here we generated three segregating populations for different combinations of diverged Ehd1 and Hd3a/RFT1 alleles, and analyzed their genetic interactions between these alleles. We demonstrated that, in an ehd1 mutant background, Hd3a was silenced, but RFT1 was expressed (although at lower levels than in plants with a functional Ehd1) under short-day (SD) and long-day (LD) conditions. We identified a nonfunctional RFT1 allele (rft1); the lines carrying homozygous ehd1 and Hd3a/rft1 failed to induce the floral transition under SD and LD conditions. Like Hd3a, RFT1 also interacted with 14-3-3 proteins, the florigen receptors, but a nonfunctional RFT1 with a crucial E105K mutation failed to interact with 14-3-3 proteins. Furthermore, analyses of sequence variation and geographic distribution suggested that functional RFT1 alleles were selected during rice adaptation to high-latitude regions. Our results demonstrate the important roles of RFT1 in rice flowering and regional adaptation.


Assuntos
Aclimatação/genética , Oryza/genética , Proteínas 14-3-3/metabolismo , Agricultura , Alelos , Sequência de Aminoácidos , Mapeamento Cromossômico , Genes de Plantas , Dados de Sequência Molecular , Oryza/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA