Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Fungi (Basel) ; 10(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38921373

RESUMO

DNA damage checkpoints are essential for coordinating cell cycle arrest and gene transcription during DNA damage response. Exploring the targets of checkpoint kinases in Saccharomyces cerevisiae and other fungi has expanded our comprehension of the downstream pathways involved in DNA damage response. While the function of checkpoint kinases, specifically Rad53, is well documented in the fungal pathogen Candida albicans, their targets remain poorly understood. In this study, we explored the impact of deleting RAD53 on the global transcription profiles and observed alterations in genes associated with ribosome biogenesis, DNA replication, and cell cycle. However, the deletion of RAD53 only affected a limited number of known DNA damage-responsive genes, including MRV6 and HMX1. Unlike S. cerevisiae, the downregulation of HOF1 transcription in C. albicans under the influence of Methyl Methanesulfonate (MMS) did not depend on Dun1 but still relied on Rad53 and Rad9. In addition, the transcription factor Mcm1 was identified as a regulator of HOF1 transcription, with evidence of dynamic binding to its promoter region; however, this dynamic binding was interrupted following the deletion of RAD53. Furthermore, Rad53 was observed to directly interact with the promoter region of HOF1, thus suggesting a potential role in governing its transcription. Overall, checkpoints regulate global gene transcription in C. albicans and show species-specific regulation on HOF1; these discoveries improve our understanding of the signaling pathway related to checkpoints in this pathogen.

2.
Genomics ; 116(2): 110811, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38387766

RESUMO

Sugarcane molasses is one of the main raw materials for bioethanol production, and Saccharomyces cerevisiae is the major biofuel-producing organism. In this study, a batch fermentation model has been used to examine ethanol titers of deletion mutants for all yeast nonessential genes in this yeast genome. A total of 42 genes are identified to be involved in ethanol production during fermentation of sugarcane molasses. Deletion mutants of seventeen genes show increased ethanol titers, while deletion mutants for twenty-five genes exhibit reduced ethanol titers. Two MAP kinases Hog1 and Kss1 controlling the high osmolarity and glycerol (HOG) signaling and the filamentous growth, respectively, are negatively involved in the regulation of ethanol production. In addition, twelve genes involved in amino acid metabolism are crucial for ethanol production during fermentation. Our findings provide novel targets and strategies for genetically engineering industrial yeast strains to improve ethanol titer during fermentation of sugarcane molasses.


Assuntos
Saccharomycetales , Saccharum , Fermentação , Etanol/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharum/genética , Saccharum/metabolismo , Saccharomycetales/metabolismo , Sistema de Sinalização das MAP Quinases , Melaço , Aminoácidos
4.
J Fluoresc ; 33(5): 1971-1979, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36933122

RESUMO

As a common flavonols, kaempferol (Kae) has a broad market as health food and medicine for its anti-inflammatory, anti-oxidation, and anti-cancer properties. In this study, a novel convenient and simple fluorescent sensor based on carbon dots (CDs) for the detection of Kae was developed. The fluorescent CDs, with excellent photo-luminescence (PL) and up-conversion luminescence (UCPL) properties, were successfully prepared by low-temperature oil bath reaction based on ascorbic acid as carbon source at 90 °C in one pot. Under the optimal conditions, the fluorescence (FL) intensity of CDs was gradually quenched by the increasing addition of Kae with a linear relationship between F0/F and Kae concentration in a wide range from 5 µM to 100 µM with a detection limit of 0.38 µM. And this designed sensor was favourably applied for the detection of Kae in actual sample (xin-da-kang tablets). Moreover, the proposed CDs has great application prospects as a drug-sensor for detecting Kae due to its simple operation, economical and green materials, low equipment requirement, and rapid detection.


Assuntos
Pontos Quânticos , Temperatura , Quempferóis , Carbono , Corantes Fluorescentes
5.
Int J Mol Sci ; 23(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35886903

RESUMO

The infection of a mammalian host by the pathogenic fungus Candida albicans involves fungal resistance to reactive oxygen species (ROS)-induced DNA damage stress generated by the defending macrophages or neutrophils. Thus, the DNA damage response in C. albicans may contribute to its pathogenicity. Uncovering the transcriptional changes triggered by the DNA damage-inducing agent MMS in many model organisms has enhanced the understanding of their DNA damage response processes. However, the transcriptional regulation triggered by MMS remains unclear in C. albicans. Here, we explored the global transcription profile in response to MMS in C. albicans and identified 306 defined genes whose transcription was significantly affected by MMS. Only a few MMS-responsive genes, such as MGT1, DDR48, MAG1, and RAD7, showed potential roles in DNA repair. GO term analysis revealed that a large number of induced genes were involved in antioxidation responses, and some downregulated genes were involved in nucleosome packing and IMP biosynthesis. Nevertheless, phenotypic assays revealed that MMS-induced antioxidation gene CAP1 and glutathione metabolism genes GST2 and GST3 showed no direct roles in MMS resistance. Furthermore, the altered transcription of several MMS-responsive genes exhibited RAD53-related regulation. Intriguingly, the transcription profile in response to MMS in C. albicans shared a limited similarity with the pattern in S. cerevisiae, including COX17, PRI2, and MGT1. Overall, C. albicans cells exhibit global transcriptional changes to the DNA damage agent MMS; these findings improve our understanding of this pathogen's DNA damage response pathways.


Assuntos
Candida albicans , Metanossulfonato de Metila , Proteínas de Capeamento de Actina/genética , Proteínas de Capeamento de Actina/metabolismo , Animais , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/metabolismo , Dano ao DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Mamíferos/metabolismo , Metanossulfonato de Metila/farmacologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Ann Transl Med ; 10(2): 114, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35282094

RESUMO

We report the first case of combined treatment using oral drugs, thermotherapy, and carbon dioxide fractional laser for an elderly patient with skin chromoblastomycosis caused by Fonsecaea monophora. Chromoblastomycosis is a chronic and refractory granulomatous disease of the skin and subcutaneous tissues caused by a group of dematiaceous fungi, which can cause teratogenesis, disability, and even cancer. One of the subtypes, F. monophora, is not only limited to the skin and subcutaneous tissues but also affects the central nervous system. Therefore, a timely and clear diagnosis, as well as active and effective treatment, are particularly important. This case report presents a 75-year-old male patient whose left forearm had a plaque with mild pruritus for more than three years. The patient's skin lesions were histopathologically examined, and the fungus on the surface of the scabbed skin was examined by fluorescence microscopy and cultured. The strains obtained by the culture were identified by morphological and molecular biology, and a drug susceptibility test was conducted in vitro. Histopathology revealed hyperkeratosis of the epidermis with pseudoepitheliomatous hyperplasia, chronic granulomatous changes in the dermis, and brown thick-walled sclerotic corpuscles both inside and outside giant cells. Septate hyphae and sclerotic corpuscles could be observed in the fungus on the surface of the scabbed skin by fluorescence staining, and black villous colonies could be observed in vitro. Under the scanning electron microscope, rhinocladiella was the primary sporulation type, and the conidia were oval. Molecular identification results showed that the similarity between its internal transcribed spacer (ITS) sequence and that of F. monophora, a Chinese strain (IFM41705), was the highest, reaching 100%. The results of the drug susceptibility test showed that the minimum inhibitory concentrations of itraconazole and voriconazole were 0.125 mg/L and 0.06 mg/L, respectively. The patient was given oral itraconazole 0.2 qd, combined with local thermotherapy and carbon dioxide fractional laser treatment. After 16 weeks, the microscopic examination of the fungus was negative, showing good efficacy.

7.
Genetics ; 220(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34849863

RESUMO

Zinc cluster transcription factors (TFs) are essential fungal regulators of gene expression. In the pathogen Candida albicans, the gene orf19.1604 encodes a zinc cluster TF regulating filament development. Hyperactivation of orf19.1604, which we have named RHA1 for Regulator of Hyphal Activity, generates wrinkled colony morphology under nonhyphal growth conditions, triggers filament formation, invasiveness, and enhanced biofilm formation and causes reduced virulence in the mouse model of systemic infection. The strain expressing activated Rha1 shows up-regulation of genes required for filamentation and cell-wall-adhesion-related proteins. Increased expression is also seen for the hyphal-inducing TFs Brg1 and Ume6, while the hyphal repressor Nrg1 is downregulated. Inactivation of RHA1 reduces filamentation under a variety of filament-inducing conditions. In contrast to the partial effect of either single mutant, the double rha1 ume6 mutant strain is highly defective in both serum- and Spider-medium-stimulated hyphal development. While the loss of Brg1 function blocks serum-stimulated hyphal development, this block can be significantly bypassed by Rha1 hyperactivity, and the combination of Rha1 hyperactivity and serum addition can generate significant polarization even in brg1 ume6 double mutants. Thus, in response to external signals, Rha1 functions with other morphogenesis regulators including Brg1 and Ume6, to mediate filamentation.


Assuntos
Candida albicans
9.
Comput Struct Biotechnol J ; 19: 6343-6354, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938410

RESUMO

Cells are constantly challenged by internal or external genotoxic assaults, which may induce a high frequency of DNA lesions, leading to genome instability. Accumulation of damaged DNA is severe or even lethal to cells and can result in abnormal proliferation that can cause cancer in multicellular organisms, aging or cell death. Eukaryotic cells have evolved a comprehensive defence system termed the DNA damage response (DDR) to monitor and remove lesions in their DNA. The DDR has been extensively studied in the budding yeast Saccharomyces cerevisiae. Emerging evidence indicates that DDR genes in the pathogenic fungus Candida albicans show functional consistency with their orthologs in S. cerevisiae, but may act through distinct mechanisms. In particular, the DDR in C. albicans appears critical for resisting DNA damage stress induced by reactive oxygen species (ROS) produced from immune cells, and this plays a vital role in pathogenicity. Therefore, DDR genes could be considered as potential targets for clinical therapies. This review summarizes the identified DNA damage checkpoint and repair genes in C. albicans based on their orthologs in S. cerevisiae, and discusses their contribution to pathogenicity in C. albicans.

10.
Genetics ; 217(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33724418

RESUMO

The assimilation of inorganic sulfate and the synthesis of the sulfur-containing amino acids methionine and cysteine is mediated by a multibranched biosynthetic pathway. We have investigated this circuitry in the fungal pathogen Candida albicans, which is phylogenetically intermediate between the filamentous fungi and Saccharomyces cerevisiae. In S. cerevisiae, this pathway is regulated by a collection of five transcription factors (Met4, Cbf1, Met28, and Met31/Met32), while in the filamentous fungi the pathway is controlled by a single Met4-like factor. We found that in C. albicans, the Met4 ortholog is also a core regulator of methionine biosynthesis, where it functions together with Cbf1. While C. albicans encodes this Met4 protein, a Met4 paralog designated Met28 (Orf19.7046), and a Met31 protein, deletion, and activation constructs suggest that of these proteins only Met4 is actually involved in the regulation of methionine biosynthesis. Both Met28 and Met31 are linked to other functions; Met28 appears essential, and Met32 appears implicated in the regulation of genes of central metabolism. Therefore, while S. cerevisiae and C. albicans share Cbf1 and Met4 as central elements of the methionine biosynthesis control, the other proteins that make up the circuit in S. cerevisiae are not members of the C. albicans control network, and so the S. cerevisiae circuit likely represents a recently evolved arrangement.


Assuntos
Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Metionina/biossíntese , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Metionina/genética
11.
Comput Struct Biotechnol J ; 18: 4002-4015, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363697

RESUMO

The polymorphous cellular shape of Candida albicans, in particular the transition from a yeast to a filamentous form, is crucial for either commensalism or life-threatening infections of the host. Various external or internal stimuli, including serum and nutrition starvation, have been shown to regulate filamentous growth primarily through two classical signaling pathways, the cAMP-PKA and the MAPK pathways. Genotoxic stress also induces filamentous growth, but through independent pathways, and little is known about negative regulation during this reversible morphological transition. In this study, we established that ARP1 in C. albicans, similar to its homolog in S. cerevisiae, has a role in nuclei separation and spindle orientation. Deletion of ARP1 generated filamentous and invasive growth as well as increased biofilm formation, accompanied by up-regulation of hyphae specific genes, such as HWP1, UME6 and ALS3. The filamentous and invasive growth of the ARP1 deletion strain was independent of transcription factors Efg1, Cph1 and Ume6, but was suppressed by deleting checkpoint BUB2 or overexpressing NRG1. Deletion of ARP1 impaired the colonization of Candida cells in mice and also attenuated virulence in a mouse model. All the data suggest that loss of ARP1 activates filamentous and invasive growth in vitro, and that it positively regulates virulence in vivo, which provides insight into actin-related morphology and pathogenicity in C. albicans.

12.
J Int Med Res ; 48(12): 300060520972228, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33350335

RESUMO

OBJECTIVE: The activation of hepatic stellate cells (HSCs) is a key event in schistosome-induced liver fibrosis. Previous studies have shown that soluble egg antigens and the recombinant P40 protein from Schistosoma japonicum eggs inhibit HSC activation. In the present study, we observed the direct effect of the S. japonicum recombinant (r)SjE16 protein on HSCs. METHODS: The sequence of SjE16 was analyzed by bioinformatics. Then western blotting, quantitative PCR, and MTT assays were performed to observe the effects of rSjE16 on HSCs. RESULTS: The SjE16 protein has no signal peptide or transmembrane region. rSjE16 significantly inhibited expression levels of α-smooth muscle actin and collagen I protein in LX-2 cells. rSjE16 also significantly increased the expression levels of interleukin (IL)-6 and IL-8, and enhanced the expression of matrix metalloproteinase (MMP)-2, MMP-9, and peroxisome proliferator-activated receptor-γ in LX-2 cells. LX-2 cell viability was not inhibited by rSjE16. CONCLUSION: rSjE16 may be involved in the progression of HSC activation via a complex molecular mechanism, which requires further study to fully understand.


Assuntos
Schistosoma japonicum , Esquistossomose Japônica , Animais , Células Estreladas do Fígado/patologia , Cirrose Hepática/patologia , Proteínas Recombinantes/genética , Esquistossomose Japônica/genética
13.
mSphere ; 5(1)2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075883

RESUMO

In the pathogenic yeast Candida albicans, the DNA damage response contributes to pathogenicity by regulating cell morphology transitions and maintaining survival in response to DNA damage induced by reactive oxygen species (ROS) in host cells. However, the function of nucleotide excision repair (NER) in C. albicans has not been extensively investigated. To better understand the DNA damage response and its role in virulence, we studied the function of the Rad23 nucleotide excision repair protein in detail. The RAD23 deletion strain and overexpression strain both exhibit UV sensitivity, confirming the critical role of RAD23 in the nucleotide excision repair pathway. Genetic interaction assays revealed that the role of RAD23 in the UV response relies on RAD4 but is independent of RAD53, MMS22, and RAD18RAD4 and RAD23 have similar roles in regulating cell morphogenesis and biofilm formation; however, only RAD23, but not RAD4, plays a negative role in virulence regulation in a mouse model. We found that the RAD23 deletion strain showed decreased survival in a Candida-macrophage interaction assay. Transcriptome sequencing (RNA-seq) and quantitative real-time PCR (qRT-PCR) data further revealed that RAD23, but not RAD4, regulates the transcription of a virulence factor, SUN41, suggesting a unique role of RAD23 in virulence regulation. Taking these observations together, our work reveals that the RAD23-related nucleotide excision pathway plays a critical role in the UV response but may not play a direct role in virulence. The virulence-related role of RAD23 may rely on the regulation of several virulence factors, which may give us further understanding about the linkage between DNA damage repair and virulence regulation in C. albicansIMPORTANCECandida albicans remains a significant threat to the lives of immunocompromised people. An understanding of the virulence and infection ability of C. albicans cells in the mammalian host may help with clinical treatment and drug discovery. The DNA damage response pathway is closely related to morphology regulation and virulence, as well as the ability to survive in host cells. In this study, we checked the role of the nucleotide excision repair (NER) pathway, the key repair system that functions to remove a large variety of DNA lesions such as those caused by UV light, but whose function has not been well studied in C. albicans We found that Rad23, but not Rad4, plays a role in virulence that appears independent of the function of the NER pathway. Our research revealed that the NER pathway represented by Rad4/Rad23 may not play a direct role in virulence but that Rad23 may play a unique role in regulating the transcription of virulence genes that may contribute to the virulence of C. albicans.


Assuntos
Candida albicans/genética , Dano ao DNA , Reparo do DNA , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Fatores de Virulência/genética , Animais , Biofilmes/crescimento & desenvolvimento , Candida albicans/patogenicidade , Candida albicans/efeitos da radiação , Deleção de Genes , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Células RAW 264.7 , Raios Ultravioleta , Virulência
14.
Mol Biol Cell ; 31(5): 348-359, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31940254

RESUMO

Cells depend on robust DNA damage recognition and repair systems to maintain genomic integrity for survival in a mutagenic environment. In the pathogenic yeast Candida albicans, a subset of genes involved in the response to DNA damage-induced genome instability and morphological changes has been found to regulate virulence. To better understand the virulence-linked DNA repair network, we screened for methyl methane sulfonate (MMS) sensitivity within the GRACE conditional expression collection and identified 56 hits. One of these potential DNA damage repair-associated genes, a HOF1 conditional mutant, unexpectedly had a previously characterized function in cytokinesis. Deletion of HOF1 resulted in MMS sensitivity and genome instability, suggesting Hof1 acts in the DNA damage response. By probing genetic interactions with distinct DNA repair pathways, we found that Hof1 is genetically linked to the Rad53 pathway. Furthermore, Hof1 is down-regulated in a Rad53-dependent manner and its importance in the MMS response is reduced when Rad53 is overexpressed or when RAD4 or RAD23 is deleted. Together, this work expands our understanding of the C. albicans DNA repair network and uncovers interplay between the cytokinesis regulator Hof1 and the Rad53-mediated checkpoint.


Assuntos
Candida albicans/citologia , Candida albicans/metabolismo , Pontos de Checagem do Ciclo Celular , Dano ao DNA , Proteínas Fúngicas/metabolismo , Metanossulfonato de Metila/toxicidade , Candida albicans/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Epistasia Genética/efeitos dos fármacos , Proteínas Fúngicas/química , Instabilidade Genômica/efeitos dos fármacos , Modelos Biológicos , Mutação/genética , Domínios Proteicos
15.
FEMS Yeast Res ; 19(8)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31644792

RESUMO

In the pathogenic fungus Candida albicans, phosphoregulation of the checkpoint kinase Rad53 plays a crucial role in the filamentous growth response to genotoxic stresses. The protein phosphatase 4 (PP4) complex, containing Pph3 and either Psy2 or Psy4, is proved to play a critical role in Rad53 dephosphorylation. In previous studies, we characterized CaPtc2 (the ortholog of both Ptc2 and Ptc3 in Saccharomyces cerevisiae) as a potential DNA-damage-related protein phosphatase. In this study, we checked the genetic interaction of PTC2 with the PP4 complex in the DNA damage response pathway. The results suggest that Ptc2 shows a negative genetic interaction with Pph3, but positive genetic interaction with either Psy2 or Psy4 in response to genotoxic stress. Deletion of PTC2 alone resulted in no significant change in cell virulence, but double deletion of PTC2 PPH3 significantly decreased virulence, while double deletions of either PTC2 PSY2 or PTC2 PSY4 caused virulence levels similar to that shown by PSY2 or PSY4 single-gene deletion cells. Taken together, we propose that Ptc2 in C. albicans plays a compensatory role for Pph3 but is dependent on Psy2 and Psy4 in regulation of DNA damage and cell virulence.


Assuntos
Candida albicans/genética , Candida albicans/patogenicidade , Dano ao DNA , Proteínas Fúngicas/genética , Fosfoproteínas Fosfatases/genética , Proteína Fosfatase 2C/genética , Animais , Candida albicans/enzimologia , DNA Fúngico/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação , Virulência
16.
Mikrochim Acta ; 186(7): 478, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31250209

RESUMO

A ratiometric electrochemical aptamer-based assay is described for the ultrasensitive and highly specific determination of adenosine triphosphate (ATP). It is based on ATP aptamer-mediated triple-helix molecular switch (THMS). The method uses (a) a hairpin DNA (MB-DNA-SH) labeled with the redox probe Methylene Blue (MB) at the 3' end, and a thiol group at the 5' end, and (b) a single strand ATP aptamer modified with two ferrocenes at each end (Fc-DNA-Fc). The labeled probe of type MB-DNA-SH was self-assembled onto the surface of a gold electrode via gold-thiol binding. On exposure to Fc-DNA-Fc, it will hybridize with MB-DNA-SH to form a stable THMS structure on electrode surface. In the presence of ATP, it hybridizes with the loop portion of Fc-DNA-Fc, and this results in the unwinding of the THMS structure. Such variation caused the changes of the differential pulse voltammetry (DPV) peak currents of both MB (at around -0.25 V) and Fc (at around 0.39 V; both vs. Ag/AgCl). A significant enhancement is found for the ratio of the two DPV peaks. Under the optimum experimental conditions, this assay has a response that covers the 0.05 to 100 pM ATP concentration range, and the detection limit is 5.2 fM (for S/N = 3). The method is highly selective for ATP over its analogs. Graphical abstract Schematic presentation of a novel ratiometric electrochemical aptasensor for ATP via triple-helix molecular switch (THMS) strategy. MB-DNA-SH was self-assembled on GE surface through gold-thiol binding. Fc-DNA-Fc hybridized with MB-DNA-SH to form THMS structure. ATP specifically bond with its aptamer sequence of Fc-DNA-Fc to unwind the THMS structure. The ratio of DPV peak currents of MB and Fc was applied to monitor the concentration of ATP in real samples over its analogs.

17.
Analyst ; 143(19): 4764-4773, 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30209467

RESUMO

Herein, a label-free and ultrasensitive electrochemical aptasensor for the determination of lead(ii) (Pb2+) was described. It was based on the application of a N,P dual-doped carbon dot-chitosan (N,P-CD-CS) composite as the signal molecule carrier and an aptamer (APT) as the specific binding probe for Pb2+ that were self-assembled on the surface of a gold electrode (GE). 6-Mercapto-1-hexanol (MCH) was used to block the nonspecific binding sites, and the electro-active molecule thionine (THi) was used as the signaling probe. The differential pulse voltammetry (DPV) response of THi at a rather low working potential of -0.17 V (vs. Ag/AgCl) was used to detect Pb2+. The electrochemical performances of the resulting modified electrode were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. Under optimal experimental conditions, the modified electrode exhibited excellent DPV response depending on the concentration of Pb2+ in the 0.01 nM to 10 nM range. The limit of detection was 3.8 pM (at S/N = 3). The modified electrode displayed good reproducibility and excellent stability. It was successfully applied for the determination of Pb2+ in real water samples.

18.
Exp Ther Med ; 15(6): 4709-4716, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29805490

RESUMO

Endotoxin tolerance is an immunohomeostatic reaction to reiterant lipopolysaccharide (LPS) exposure that maintains a state of altered responsiveness in immune cells, resulting in the inhibition of the pro-inflammatory response and the resolution of inflammation. Microglia constitutes the first line of defense against endogenous and external challenges in the brain. MicroRNAs (miRs) serve a critical function in the regulation of inflammation. The aim of the present study was to investigate whether miR-155 regulates endotoxin tolerance. miR-155 and suppressor of cytokine signaling-1 (SOCS1) mRNA expression was measured using RT-qPCR. The expression of SOCS1 was measured by western blotting and immunofluorescence. TNF-α levels were detected by an enzyme-linked immunosorbent assay. The results indicated that miR-155 expression was significantly downregulated in the microglia and cortex tissue following the induction of endotoxin tolerance. This was consistent with an increase in the expression of SOCS1, a predicted target of miR-155 and key inhibitor of the inflammatory reaction. Transfection with miR-155 inhibitor significantly enhanced SOCS1 expression in the microglia following the induction of endotoxin tolerance. SOCS1 knockdown using short hairpin RNA partly inhibited the anti-inflammatory process and promoted the inflammatory response during endotoxin tolerance. The results of the current study indicate that miR-155 inhibition contributes to the development of endotoxin tolerance. Understanding how miRs regulate inflammatory mechanisms may facilitate the development of novel therapeutic strategies to treat CNS disorders.

19.
Parasitol Int ; 67(2): 213-217, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29183718

RESUMO

Protein phosphorylation, regulated by protein kinases and protein phosphatases, is crucial for protein structure and function in eukaryotic organisms. Type 2C protein phosphatase (PP2C) belongs to the serine/threonine phosphatase family and its activities require the presence of a divalent magnesium or manganese ion. In the present study, a potential PP2C phosphatase (SjPtc1) was identified in Schistosoma japonicum. The SjPTC1 gene was found to be highly expressed in adult worms. A recombinant SjPtc1 protein showed typical PP2C phosphatase activity. Heterologous SjPTC1 expression reversed the sensitivity of yeast ptc1 null mutants toward H2O2, ZnCl2, cisplatin, and rapamycin. Collectively, the results suggest that SjPtc1 may take part in the regulation of cellular responses to oxidative stress, DNA damage stress, and the TOR (target of rapamycin) signaling pathway.


Assuntos
Proteína Fosfatase 2C/genética , Proteína Fosfatase 2C/isolamento & purificação , Schistosoma japonicum/enzimologia , Animais , Mutação com Perda de Função , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/isolamento & purificação , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Proteína Fosfatase 2C/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Schistosoma japonicum/genética , Leveduras/genética
20.
Int J Med Microbiol ; 307(8): 471-480, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28967545

RESUMO

Protein phosphatase PP4 is composed of one catalytic subunit and one or two regulatory subunits and conserved in eukaryotic cells. The catalytic subunit CaPph3 forms a complex with the regulatory subunit CaPsy2, which dephosphorylates activated CaRad53 during adaptation to and recovery from MMS-mediated DNA damage. We show here that the N-terminal Y33A mutation of CaPsy2 blocks the interaction between CaPph3 and CaRad53, the deactivation of CaRad53 and the morphologic switch in recovery from genotoxic stress. In Saccharomyces cerevisiae, the ScPph3-ScPsy2-ScPsy4 complex functions to dephosphorylate γH2A. In this study, we show that CaPsy4 is a functional homolog of ScPsy4 and not involved in the deactivation of CaRad53 or CaHta, the ortholog of H2A. However, deletion of CaPSY4 causes C. albicans cells a sensitivity to genotoxic reagents and a defect in DNA damage-induced filamentation. CaPsy4 interacts with both CaPph3 and CaPsy2, but the function of CaPsy4 is independent of CaPph3 and CaPsy2 in response to genotoxic stress. C. albicans cells lacking CaPPH3, CaPSY2 or CaPSY4, and C. albicans cells carrying the Y33A mutation of CaPSY2, show increased virulence to mice. Therefore, PP4 plays a negative role in regulating the DNA damage-induced filamentation and the virulence in C. albicans.


Assuntos
Candida albicans/enzimologia , Candida albicans/patogenicidade , Dano ao DNA , Proteínas Fúngicas/metabolismo , Hifas/crescimento & desenvolvimento , Fosfoproteínas Fosfatases/metabolismo , Animais , Candida albicans/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Masculino , Camundongos Endogâmicos BALB C , Fosfoproteínas Fosfatases/genética , Mapas de Interação de Proteínas , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA