Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Protein Expr Purif ; 198: 106136, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35760252

RESUMO

Paenarthrobacter sp. TYUT067 is a soil bacterium that can degrade and use cyclohexylamine as the sole source of carbon and energy. However, the responsible enzymes involved in cyclohexylamine degradation by TYUT067 have not been cloned and characterized in detail yet. In this study, four possible cyclohexylamine degradation genes, one cyclohexylamine oxidase (Pachao), two cyclohexanone monooxygenases (Pachms) and one lactone hydrolase (Pamlh) were successfully cloned and heterologous expressed in Escherichia coli T7 host cells. The four enzymes were purified and characterized. The optimal pH and temperature of the purified enzymes toward their own substrates were 7.0 (PaCHAO), 8.0 (PaCHM1), 9.0 (PaCHM2 and PaMLH) and 30 °C (PaCHAO and PaMLH), 40 °C (PaCHM2) and 45 °C (PaCHM1), respectively, with KM of 1.1 mM (PaCHAO), 0.1 mM (PaCHM1), 0.1 mM (PaCHM2) and 0.8 mM (PaMLH), and yielding a catalytic efficiency kcat/KM of 16.1 mM-1 s-1 (PaCHAO), 1.0 mM-1 s-1 (PaCHM1), 5.0 mM-1 s-1 (PaCHM2) and 124.4 mM-1 s-1 (PaMLH). In vitro mimicking the cyclohexylamine degradation pathway was conducted by using the combined three cyclohexylamine degradation enzymes (PaCHAO, PaCHM2 and PaMLH) with 10-50 mM cyclohexylamine, 100% conversion of cyclohexylamine could be finished within 12 h without any detected intermediates. The current study confirmed the enzymes responsible for cyclohexylamine degradation in TYUT067 for the first time, provide basic information for further investigation and application of these specific enzymes in pollution control.


Assuntos
Cicloexilaminas , Micrococcaceae , Clonagem Molecular , Cicloexilaminas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrolases/genética , Micrococcaceae/metabolismo
2.
Water Sci Technol ; 83(9): 2160-2168, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33989183

RESUMO

Alicyclic amines are widely used in several types of industries, and considerable attention has been devoted to possible environmental pollution by alicyclic amines in hypersaline industrial wastewater. In this study, a new hypersaline tolerant bacterial TYUT067 capable of growing in liquid basal salt medium with cyclohexylamine (CHAM) as the sole carbon source and energy source, was isolated from soil, and discovered with highly efficient CHAM degrading ability. The strain TYUT067 was identified as Paenarthrobacter sp. based on 16S rDNA gene sequence, and its degradation characteristic was examined. The results revealed that the isolated TYUT067 could grow well under pH range of 6.5-10.0, temperature from 20 °C to 30 °C. For degradation of 60 mM of cyclohexylamine, 100% degradation could be finished within 120 h. The TYUT067 could degrade 10 mM CHAM under hypersaline conditions (3-5% NaCl, w/v), revealed the hypersaline tolerance of TYUT067. Different type of amines was also tested with TYUT067, the degradations of >90% were achieved toward several alicyclic amines. The current results suggested that TYUT067 was a potential species could be efficiently used for the degradation of alicyclic amines and might be applicable to a hypersaline wastewater treatment system for the removal of alicyclic amines.


Assuntos
Aminas , Purificação da Água , Bactérias , Biodegradação Ambiental , RNA Ribossômico 16S/genética , Águas Residuárias
3.
Environ Sci Pollut Res Int ; 27(7): 7398-7408, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31884554

RESUMO

The present study aimed to synthesize Na-X zeolite from coal gangue powder (CGP) via the alkali fusion hydrothermal method. The optimal synthetic conditions were investigated, the mass ratio of CGP/NaOH(s) was 1:1.25, and crystallization reaction time was 12 h. X-ray powder diffraction, scanning electron microscopy energy-dispersive X-ray spectrum, and Fourier transform infrared spectrometer techniques were used to test the properties of resultant zeolite product, which was highly identical to that of commercial zeolite. The efficiencies of the synthetic zeolite for Pb2+ adsorption were analyzed on factors including solution pH, adsorbent dosage, temperature, and contact time. Compared with the pseudo-first-order, Elovich, Freundlich, and Temkin models, the pseudo-second-order and Langmuir models were fitted more satisfactorily with the dynamic data and adsorption equilibrium data, respectively. The maximum Pb2+ adsorption capacity of synthetic zeolite (457 mg/g) could be reached when the pH, contact time, temperature, and initial Pb2+ concentration was 6, 40 min, 45 °C, and 200 mg/L. The adsorption capacity was higher than many of the natural and synthetic zeolites reported in previous literature.


Assuntos
Chumbo/análise , Poluentes Químicos da Água , Zeolitas , Adsorção , Carvão Mineral , Cinética , Chumbo/química , Zeolitas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA