Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
1.
Foods ; 13(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39063362

RESUMO

The fruits of Siraitia grosvenorii (S. grosvenorii) have attracted a lot of scientific interest as part of the current healthy diet. S. grosvenorii has diverse health-promoting effects, including antioxidant, anti-inflammatory, antimicrobial, respiratory modulation, metabolic modulation, antitumor, and neuroprotective effects, as well as gastrointestinal function modulation. As a plant resource, S. grosvenorii has broad application prospects, which promotes the development of the horticultural industry. Moreover, Mogroside has attracted much attention as an important active ingredient of S. grosvenorii. This review provides an in-depth exploration of the distribution, chemical composition, health benefits, and application of S. grosvenorii, particularly Mogroside. This comprehensive exploration highlights the important therapeutic potential of S. grosvenorii, prompting further research into its applications. As value-added functional ingredients, S. grosvenorii and its constituents have significant potential for disease prevention and are widely used in the development of food and health supplements.

2.
Foods ; 13(13)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38998484

RESUMO

Citrus fruits, renowned for their abundant of phytochemicals and bioactive compounds, hold a prominent position as commercially grown fruits with health-promoting properties. In this context, tangerine peel (Citri Reticulatae Pericarpium, CRP) is garnering attention as a byproduct of citrus fruits. Within the framework of the circular economy, CRP has emerged as a focal point due to its potential health benefits. CRP, extracted from Citrus reticulata cv. and aged for over three years, has attracted increasing attention for its diverse health-promoting effects, including its anticancer, cardiovascular-protecting, gastrointestinal-modulating, antioxidant, anti-inflammatory, and neuroprotective properties. Moreover, CRP positively impacts skeletal health and various physiological functions. This review delves into the therapeutic effects and molecular mechanisms of CRP. The substantial therapeutic potential of CRP highlights the need for further research into its applications in both food and medicine. As a value-added functional ingredient, CRP and its constituents are extensively utilized in the development of food and health supplements, such as teas, porridges, and traditional medicinal formulations.

3.
Plants (Basel) ; 13(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38999603

RESUMO

Both melatonin and hydrogen sulfide (H2S) mitigate chromium (Cr) toxicity in plants, but the specific interaction between melatonin and H2S in Cr detoxification remains unclear. In this study, the interaction between melatonin and H2S in Cr detoxification was elucidated by measuring cell wall polysaccharide metabolism and antioxidant enzyme activity in maize. The findings revealed that exposure to Cr stress (100 µM K2Cr2O7) resulted in the upregulation of L-/D-cysteine desulfhydrase (LCD/DCD) gene expression, leading to a 77.8% and 27.3% increase in endogenous H2S levels in maize leaves and roots, respectively. Similarly, the endogenous melatonin system is activated in response to Cr stress. We found that melatonin had a significant impact on the relative expression of LCD/DCD, leading to a 103.3% and 116.7% increase in endogenous H2S levels in maize leaves and roots, respectively. In contrast, NaHS had minimal effects on the relative mRNA expression of serotonin-Nacetyltransferase (SNAT) and endogenous melatonin levels. The production of H2S induced by melatonin is accompanied by an increase in Cr tolerance, as evidenced by elevated gene expression, elevated cell wall polysaccharide content, increased pectin methylesterase activity, and improved antioxidant enzyme activity. The scavenging of H2S decreases the melatonin-induced Cr tolerance, while the inhibitor of melatonin synthesis, p-chlorophenylalanine (p-CPA), has minimal impact on H2S-induced Cr tolerance. In conclusion, our findings suggest that H2S serves as a downstream signaling molecule involved in melatonin-induced Cr tolerance in maize.

4.
Comput Biol Med ; 178: 108690, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38879931

RESUMO

Prevalent Gene Regulatory Network (GRN) construction methods rely on generalized correlation analysis. However, in biological systems, regulation is essentially a causal relationship that cannot be adequately captured solely through correlation. Therefore, it is more reasonable to infer GRNs from a causal perspective. Existing causal discovery algorithms typically rely on Directed Acyclic Graphs (DAGs) to model causal relationships, but it often requires traversing the entire network, which result in computational demands skyrocketing as the number of nodes grows and make causal discovery algorithms only suitable for small networks with one or two hundred nodes or fewer. In this study, we propose the SLIVER (cauSaL dIscovery Via dimEnsionality Reduction) algorithm which integrates causal structural equation model and graph decomposition. SLIVER introduces a set of factor nodes, serving as abstractions of different functional modules to integrate the regulatory relationships between genes based on their respective functions or pathways, thus reducing the GRN to the product of two low-dimensional matrices. Subsequently, we employ the structural causal model (SCM) to learn the GRN within the gene node space, enforce the DAG constraint in the low-dimensional space, and guide each factor to aggregate various functions through cosine similarity. We evaluate the performance of the SLIVER algorithm on 12 real single cell transcriptomic datasets, and demonstrate it outperforms other 12 widely used methods both in GRN inference performance and computational resource usage. The analysis of the gene information integrated by factor nodes also demonstrate the biological explanation of factor nodes in GRNs. We apply it to scRNA-seq of Type 2 diabetes mellitus to capture the transcriptional regulatory structural changes of ß cells under high insulin demand.


Assuntos
Algoritmos , Redes Reguladoras de Genes , Análise de Célula Única , Transcriptoma , Humanos , Análise de Célula Única/métodos , Perfilação da Expressão Gênica , Biologia Computacional/métodos , Modelos Genéticos
5.
Artigo em Inglês | MEDLINE | ID: mdl-38855856

RESUMO

Thyroid hormones (THs) play important roles in growth, development, morphogenesis, reproduction, and so on. They are mainly meditated by binding to thyroid hormone receptors (TRs) in vertebrates. As important members of the nuclear receptor superfamily, TRs and their ligands are involved in many biological processes. To investigate the potential roles of TRs in the gonadal differentiation and sex change, we cloned and characterized the TRs genes in protogynous rice field eel (Monopterus albus). In this study, three types of TRs were obtained, which were TRαA, TRαB and TRß, encoding preproproteins of 336-, 409- and 415-amino acids, respectively. Multiple alignments of the three putative TRs protein sequences showed they had a higher similarity. Tissue expression analysis showed that TRαA mainly expressed in the gonad, while TRαB and TRß in the brain. During female-to-male sex reversal, the expression levels of all the three TRs showed a similar trend of increase followed by a decrease in the gonad. Intraperitoneal injection of triiodothyronine (T3) stimulated the expression of TRαA and TRαB, while it had no significant change on the expression of TRß in the ovary. Gonadotropin-releasing hormone analogue (GnRHa) injection also significantly upregulated the expression levels of TRαA and TRαB after 6 h, while it had no significant effect on TRß. These results demonstrated that TRs were involved in the gonadal differentiation and sex reversal, and TRα may play more important roles than TRß in reproduction by the regulation of GnRHa in rice field eel.

6.
Molecules ; 29(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38893475

RESUMO

Oxidative stress significantly contributes to ageing and disease, with antioxidants holding promise in mitigating its effects. Functional foods rich in flavonoids offer a potential strategy to mitigate oxidative damage by free radicals. We investigated the protective effects of mulberry leaf flavonoids (MLF) against H2O2-induced oxidative damage in HepG2 cells. It assessed the inhibitory effect of MLF (62.5-500 µg/mL) on H2O2-induced oxidative damage by analyzing cellular morphology and oxidative stress markers, including ROS production, mitochondrial membrane potential, antioxidant enzyme levels, MDA, and apoptosis-related proteins. The results demonstrated that MLF prevented spiny cell formation triggered by 750 µM H2O2 and significantly reduced ROS levels, restored mitochondrial membrane potential, decreased lactate dehydrogenase and alanine transaminase leakage, and reduced MDA content induced by H2O2. MLF also modulated antioxidant enzymes and attenuated oxidative damage to HepG2 cell DNA, as confirmed by staining techniques. These findings indicate the potential of MLF as a hepatoprotective agent against oxidative damage in HepG2 cells.


Assuntos
Antioxidantes , Flavonoides , Peróxido de Hidrogênio , Potencial da Membrana Mitocondrial , Morus , Estresse Oxidativo , Folhas de Planta , Espécies Reativas de Oxigênio , Humanos , Morus/química , Estresse Oxidativo/efeitos dos fármacos , Células Hep G2 , Flavonoides/farmacologia , Folhas de Planta/química , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Substâncias Protetoras/farmacologia , Substâncias Protetoras/química , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
7.
Adv Sci (Weinh) ; 11(29): e2403337, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810101

RESUMO

Sepsis is an infection-triggered, rapidly progressive systemic inflammatory syndrome with a high mortality rate. Currently, there are no promising therapeutic strategies for managing this disease in the clinic. Heparanase plays a crucial role in the pathology of sepsis, and its inhibition can significantly relieve related symptoms. Here, a novel heparanase inhibitor CV122 is rationally designed and synthesized, and its therapeutic potential for sepsis with Lipopolysaccharide (LPS) and Cecal Ligation and Puncture (CLP)-induced sepsis mouse models are evaluated. It is found that CV122 potently inhibits heparanase activity in vitro, protects cell surface glycocalyx structure, and reduces the expression of adhesion molecules. In vivo, CV122 significantly reduces the systemic levels of proinflammatory cytokines, prevents organ damage, improves vitality, and efficiently protects mice from sepsis-induced death. Mechanistically, CV122 inhibits the activity of heparanase, reduces its expression in the lungs, and protects glycocalyx structure of lung tissue. It is also found that CV122 provides effective protection from organ damage and death caused by Crimean-Congo hemorrhagic fever virus (CCHFV) infection. These results suggest that CV122 is a potential drug candidate for sepsis therapy targeting heparanase by inhibiting cytokine storm.


Assuntos
Síndrome da Liberação de Citocina , Modelos Animais de Doenças , Glucuronidase , Sepse , Animais , Sepse/tratamento farmacológico , Camundongos , Glucuronidase/metabolismo , Glucuronidase/antagonistas & inibidores , Síndrome da Liberação de Citocina/tratamento farmacológico , Camundongos Endogâmicos C57BL , Masculino , Citocinas/metabolismo
8.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(6): 749-752, 2024 Jun 10.
Artigo em Chinês | MEDLINE | ID: mdl-38818563

RESUMO

OBJECTIVE: To analyze the clinical characteristics and genetic basis of a male patient with primary infertility caused by Acephalic spermatozoa syndrome. METHODS: A patient who had presented at the Henan Provincial People's Hospital on October 1, 2022 was selected as the study subject. Clinical data and results of laboratory exams and sperm electron microscopy were collected. The patient was subjected to whole exome sequencing (WES), and candidate variants were verified by Sanger sequencing and pathogenicity analysis. RESULTS: WES revealed that the patient has harbored compound heterozygous variants of the PMFBP1 gene, namely c.853del (p.Ala285Leufs*24) and c.1276A>T (p.Lys426X), which were both unreported previously. Sanger sequencing suggested that the c.853del (p.Ala285Leufs*24) variant has derived from his deceased mother, whilst the c.1276A>T (p.Lys426X) variant has derived from his father. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), both variants were classified as pathogenic (PVS1+PM2_Supporting+PP4). CONCLUSION: The compound heterozygous variants of the PMFBP1 gene probably underlay the Acephalic spermatozoa syndrome in this patient. The discovery of the novel variants has also enriched the mutational spectrum of Acephalic spermatozoa syndrome.


Assuntos
Teratozoospermia , Adulto , Humanos , Masculino , Sequenciamento do Exoma , Testes Genéticos , Infertilidade Masculina/genética , Mutação , Espermatozoides , Teratozoospermia/genética
9.
J Nanobiotechnology ; 22(1): 262, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760823

RESUMO

BACKGROUND: Nanoplastics, are emerging pollutants, present a potential hazard to food security and human health. Titanium dioxide nanoparticles (Nano-TiO2), serving as nano-fertilizer in agriculture, may be important in alleviating polystyrene nanoplastics (PSNPs) toxicity. RESULTS: Here, we performed transcriptomic, metabolomic and physiological analyzes to identify the role of Nano-TiO2 in regulating the metabolic processes in PSNPs-stressed maize seedlings (Zea mays L.). The growth inhibition by PSNPs stress was partially relieved by Nano-TiO2. Furthermore, when considering the outcomes obtained from RNA-seq, enzyme activity, and metabolite content analyses, it becomes evident that Nano-TiO2 significantly enhance carbon and nitrogen metabolism levels in plants. In comparison to plants that were not subjected to Nano-TiO2, plants exposed to Nano-TiO2 exhibited enhanced capabilities in maintaining higher rates of photosynthesis, sucrose synthesis, nitrogen assimilation, and protein synthesis under stressful conditions. Meanwhile, Nano-TiO2 alleviated the oxidative damage by modulating the antioxidant systems. Interestingly, we also found that Nano-TiO2 significantly enhanced the endogenous melatonin levels in maize seedlings. P-chlorophenylalanine (p-CPA, a melatonin synthesis inhibitor) declined Nano-TiO2-induced PSNPs tolerance. CONCLUSIONS: Taken together, our data show that melatonin is involved in Nano-TiO2-induced growth promotion in maize through the regulation of carbon and nitrogen metabolism.


Assuntos
Carbono , Melatonina , Nitrogênio , Poliestirenos , Titânio , Zea mays , Zea mays/efeitos dos fármacos , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Titânio/farmacologia , Nitrogênio/metabolismo , Carbono/metabolismo , Melatonina/farmacologia , Poliestirenos/farmacologia , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Nanopartículas/química , Transdução de Sinais/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
10.
Angew Chem Int Ed Engl ; 63(27): e202405297, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38651620

RESUMO

Bacterial cell-surface polysaccharides are involved in various biological processes and have attracted widespread attention as potential targets for developing carbohydrate-based drugs. However, the accessibility to structurally well-defined polysaccharide or related active oligosaccharide domains remains challenging. Herein, we describe an efficiently stereocontrolled approach for the first total synthesis of a unique pentasaccharide repeating unit containing four difficult-to-construct 1,2-cis-glycosidic linkages from the cell wall polysaccharide of Cutibacterium acnes C7. The features of our approach include: 1) acceptor-reactivity-controlled glycosylation to stereoselectively construct two challenging rare 1,2-cis-ManA2,3(NAc)2 (ß-2,3-diacetamido-2,3-dideoxymannuronic acid) linkages, 2) combination use of 6-O-tert-butyldiphenylsilyl (6-O-TBDPS)-mediated steric shielding effect and ether solvent effect to stereoselectively install a 1,2-cis-glucosidic linkage, 3) bulky 4,6-di-O-tert-butylsilylene (DTBS)-directed glycosylation to stereospecifically construct a 1,2-cis-galactosidic linkage, 4) stereoconvergent [2+2+1] and one-pot chemoselective glycosylation to rapidly assemble the target pentasaccharide. Immunological activity tests suggest that the pentasaccharide can induce the production of proinflammatory cytokine TNF-α in a dose-dependent manner.


Assuntos
Parede Celular , Oligossacarídeos , Parede Celular/química , Parede Celular/imunologia , Estereoisomerismo , Oligossacarídeos/química , Oligossacarídeos/síntese química , Camundongos , Propionibacteriaceae/química , Animais , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/imunologia , Polissacarídeos Bacterianos/síntese química , Glicosilação , Humanos
11.
Aging (Albany NY) ; 16(8): 6937-6953, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643461

RESUMO

AIMS: This study aimed to evaluate the effects of VC on SIMI in rats. METHODS: In this study, the survival rate of high dose VC for SIMI was evaluated within 7 days. Rats were randomly assigned to three groups: Sham group, CLP group, and high dose VC (500 mg/kg i.v.) group. The animals in each group were treated with drugs for 1 day, 3 days or 5 days, respectively. Echocardiography, myocardial enzymes and HE were used to detect cardiac function. IL-1ß, IL-6, IL-10 and TNF-α) in serum were measured using ELISA kits. Western blot was used to detect proteins related to apoptosis, inflammation, autophagy, MAPK, NF-κB and PI3K/Akt/mTOR signaling pathways. RESULTS: High dose VC improved the survival rate of SIMI within 7 days. Echocardiography, HE staining and myocardial enzymes showed that high-dose VC relieved SIMI in rats in a time-dependent manner. And compared with CLP group, high-dose VC decreased the expressions of pro-apoptotic proteins, while increased the expression of anti-apoptotic protein. And compared with CLP group, high dose VC decreased phosphorylation levels of Erk1/2, P38, JNK, NF-κB and IKK α/ß in SIMI rats. High dose VC increased the expression of the protein Beclin-1 and LC3-II/LC3-I ratio, whereas decreased the expression of P62 in SIMI rats. Finally, high dose VC attenuated phosphorylation of PI3K, AKT and mTOR compared with the CLP group. SIGNIFICANCE: Our results showed that high dose VC has a good protective effect on SIMI after continuous treatment, which may be mediated by inhibiting apoptosis and inflammatory, and promoting autophagy through regulating MAPK, NF-κB and PI3K/AKT/mTOR pathway.


Assuntos
Ácido Ascórbico , Autofagia , Traumatismos Cardíacos , Miocárdio , Sepse , Animais , Ratos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/administração & dosagem , Apoptose/efeitos dos fármacos , Ácido Ascórbico/farmacologia , Ácido Ascórbico/uso terapêutico , Autofagia/efeitos dos fármacos , Traumatismos Cardíacos/tratamento farmacológico , Traumatismos Cardíacos/etiologia , Traumatismos Cardíacos/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Sepse/tratamento farmacológico , Sepse/complicações , Sepse/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
12.
Sci Total Environ ; 927: 172402, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608888

RESUMO

Microbial fuel cells (MFCs) have significant potential for environmental remediation and energy recycling directly from refractory aromatic hydrocarbons. To boost the capacities of toluene removal and the electricity production in MFCs, this study constructed a polyaniline@carbon nanotube (PANI@CNT) bioanode with a three-dimensional framework structure. Compared with the control bioanode based on graphite sheet, the PANI@CNT bioanode increased the output voltage and toluene degradation kinetics by 2.27-fold and 1.40-fold to 0.399 V and 0.60 h-1, respectively. Metagenomic analysis revealed that the PANI@CNT bioanode promoted the selective enrichment of Pseudomonas, with the dual functions of degrading toluene and generating exogenous electrons. Additionally, compelling genomic evidence elucidating the relationship between functional genes and microorganisms was found. It was interesting that the genes derived from Pseudomonas related to extracellular electron transfer, tricarboxylic acid cycle, and toluene degradation were upregulated due to the existence of PANI@CNT. This study provided biomolecular insights into key genes and related microorganisms that effectively facilitated the organic pollutant degradation and energy recovery in MFCs, offering a novel alternative for high-performance bioanode.


Assuntos
Fontes de Energia Bioelétrica , Metagenômica , Nanotubos de Carbono , Tolueno , Tolueno/metabolismo , Compostos de Anilina , Biodegradação Ambiental , Eletricidade , Pseudomonas/metabolismo , Pseudomonas/genética , Eletrodos
13.
Cell Biol Toxicol ; 40(1): 23, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630355

RESUMO

Cytosolic thiouridylase 2 (CTU2) is an enzyme modifying transfer RNAs post-transcriptionally, which has been implicated in breast cancer and melanoma development. And we found CTU2 participated in hepatocellular carcinoma (HCC) progression here. HepG2 cells as well as xenograft nude mice model were employed to investigate the role of CTU2 in HCC development in vitro and in vivo respectively. Further, we defined CTU2 as a Liver X receptor (LXR) targeted gene, with a typical LXR element in the CTU2 promoter. CTU2 expression was activated by LXR agonist and depressed by LXR knockout. Interestingly, we also found CTU2 took part in lipogenesis by directly enhancing the synthesis of lipogenic proteins, which provided a novel mechanism for LXR regulating lipid synthesis. Meanwhile, lipogenesis was active during cell proliferation, particularly in tumor cells. Reduction of CTU2 expression was related to reduced tumor burden and synergized anti-tumor effect of LXR ligands by inducing tumor cell apoptosis and inhibiting cell proliferation. Taken together, our study identified CTU2 as an LXR target gene. Inhibition of CTU2 expression could enhance the anti-tumor effect of LXR ligand in HCC, identifying CTU2 as a promising target for HCC treatment and providing a novel strategy for the application of LXR agonists in anti-tumor effect.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptores X do Fígado , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama , Carcinoma Hepatocelular/genética , Modelos Animais de Doenças , Neoplasias Hepáticas/genética , Receptores X do Fígado/genética , Camundongos Nus
14.
J Gen Virol ; 105(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38602389

RESUMO

A negative-strand symbiotic RNA virus, tentatively named Nilaparvata lugens Bunyavirus (NLBV), was identified in the brown planthopper (BPH, Nilaparvata lugens). Phylogenetic analysis indicated that NLBV is a member of the genus Mobuvirus (family Phenuiviridae, order Bunyavirales). Analysis of virus-derived small interfering RNA suggested that antiviral immunity of BPH was successfully activated by NLBV infection. Tissue-specific investigation showed that NLBV was mainly accumulated in the fat-body of BPH adults. Moreover, NLBV was detected in eggs of viruliferous female BPHs, suggesting the possibility of vertical transmission of NLBV in BPH. Additionally, no significant differences were observed for the biological properties between NLBV-infected and NLBV-free BPHs. Finally, analysis of geographic distribution indicated that NLBV may be prevalent in Southeast Asia. This study provided a comprehensive characterization on the molecular and biological properties of a symbiotic virus in BPH, which will contribute to our understanding of the increasingly discovered RNA viruses in insects.


Assuntos
Hemípteros , Orthobunyavirus , Vírus de RNA , Animais , Feminino , Filogenia , Insetos , Vírus de RNA/genética
15.
BMC Ophthalmol ; 24(1): 126, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504225

RESUMO

BACKGROUND: This study evaluates the impact of corneal power on the accuracy of 14 newer intraocular lens (IOL) calculation formulas in cataract surgery. The aim is to assess how these formulas perform across different corneal curvature ranges, thereby guiding more precise IOL selection. METHODS: In this retrospective case series, 336 eyes from 336 patients who underwent cataract surgery were studied. The cohort was divided into three groups according to preoperative corneal power. Key metrics analyzed included mean prediction error (PE), standard deviation of PE (SD), mean absolute prediction error (MAE), median absolute error (MedAE), and the percentage of eyes with PE within ± 0.25 D, 0.50 D, ± 0.75 D, ± 1.00 D and ± 2.00 D. RESULTS: In the flat K group (Km < 43 D), VRF-G, Emmetropia Verifying Optical Version 2.0 (EVO2.0), Kane, and Hoffer QST demonstrated lower SDs (± 0.373D, ± 0.379D, ± 0.380D, ± 0.418D, respectively) compared to the VRF formula (all P < 0.05). EVO2.0 and K6 showed significantly different SDs compared to Barrett Universal II (BUII) (all P < 0.02). In the medium K group (43 D ≤ Km < 46 D), VRF-G, BUII, Karmona, K6, EVO2.0, Kane, and Pearl-DGS recorded lower MAEs (0.307D to 0.320D) than Olsen (OLCR) and Castrop (all P < 0.03), with RBF3.0 having the second lowest MAE (0.309D), significantly lower than VRF and Olsen (OLCR) (all P < 0.05). In the steep K group (Km ≥ 46D), RBF3.0, K6, and Kane achieved significantly lower MAEs (0.279D, 0.290D, 0.291D, respectively) than Castrop (all P < 0.001). CONCLUSIONS: The study highlights the varying accuracy of newer IOL formulas based on corneal power. VRF-G, EVO2.0, Kane, K6, and Hoffer QST are highly accurate for flat corneas, while VRF-G, RBF3.0, BUII, Karmona, K6, EVO2.0, Kane, and Pearl-DGS are recommended for medium K corneas. In steep corneas, RBF3.0, K6, and Kane show superior performance.


Assuntos
Extração de Catarata , Catarata , Lentes Intraoculares , Facoemulsificação , Humanos , Estudos Retrospectivos , Córnea , Olho Artificial , Biometria , Refração Ocular , Óptica e Fotônica , Comprimento Axial do Olho
16.
Pulm Circ ; 14(1): e12351, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38468630

RESUMO

This study aimed to evaluate the effectiveness and safety of an oral sequential triple combination therapy with selexipag after dual combination therapy with endothelin receptor antagonist (ERA) and phosphodiesterase-5 inhibitor (PDE5I)/riociguat in pulmonary arterial hypertension (PAH) patients. A total of 192 PAH patients from 10 centers had received oral sequential selexipag therapy after being on dual-combination therapy with ERA and PDE5i/riociguat for a minimum of 3 months. Clinical data were collected at baseline and after 6 months of treatment. The study analyzed the event-free survival at 6 months and all-cause death over 2 years. At baseline, the distribution of patients among the risk groups was as follows: 22 in the low-risk group, 35 in the intermediate-low-risk group, 91 in the intermediate-high-risk group, and 44 in the high-risk group. After 6 months of treatment, the oral sequential triple combination therapy resulted in reduced NT-proBNP levels (media from 1604 to 678 pg/mL), a decline in the percentage of WHO-FC III/IV (from 79.2% to 60.4%), an increased in the 6MWD (from 325 ± 147 to 378 ± 143 m) and a rise in the percentage of patients with three low-risk criteria (from 5.7% to 13.5%). Among the low-risk group, there was an improvement in the right heart remodeling, marked by a decrease in right atrium area and eccentricity index. The intermediate-low-risk group exhibited significant enhancements in WHO-FC and tricuspid annular plane systolic excursion. For those in the intermediate-high and high-risk groups, there were marked improvements in activity tolerance, as reflected by WHO-FC and 6MWD. The event-free survival rate at 6 months stood at 88%. Over the long-term follow-up, the survival rates at 1 and 2 years were 86.5% and 86.0%, respectively. In conclusion, the oral sequential triple combination therapy enhanced both exercise capacity and cardiac remodeling across PAH patients of different risk stratifications.

17.
Angew Chem Int Ed Engl ; 63(13): e202315674, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38327006

RESUMO

Sesquiterpene synthases (STPSs) catalyze carbocation-driven cyclization reactions that can generate structurally diverse hydrocarbons. The deprotonation-reprotonation process is widely used in STPSs to promote structural diversity, largely attributable to the distinct regio/stereoselective reprotonations. However, the molecular basis for reprotonation regioselectivity remains largely understudied. Herein, we analyzed two highly paralogous STPSs, Artabotrys hexapetalus (-)-cyperene synthase (AhCS) and ishwarane synthase (AhIS), which catalyze reactions that are distinct from the regioselective protonation of germacrene A (GA), resulting in distinct skeletons of 5/5/6 tricyclic (-)-cyperene and 6/6/5/3 tetracyclic ishwarane, respectively. Isotopic labeling experiments demonstrated that these protonations occur at C3 and C6 of GA in AhCS and AhIS, respectively. The cryo-electron microscopy-derived AhCS complex structure provided the structural basis for identifying different key active site residues that may govern their functional disparity. The structure-guided mutagenesis of these residues resulted in successful functional interconversion between AhCS and AhIS, thus targeting the three active site residues [L311-S419-C458]/[M311-V419-A458] that may act as a C3/C6 reprotonation switch for GA. These findings facilitate the rational design or directed evolution of STPSs with structurally diverse skeletons.


Assuntos
Alquil e Aril Transferases , Sesquiterpenos , Microscopia Crioeletrônica , Sesquiterpenos/química , Catálise , Domínio Catalítico , Alquil e Aril Transferases/genética
18.
iScience ; 27(2): 108780, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38303701

RESUMO

Somatic mutations contribute to cancer development by altering the activity of enhancers. In the study, a total of 135 mutation-driven enhancers, which displayed significant chromatin accessibility changes, were identified as candidate risk factors for breast cancer (BRCA). Furthermore, we identified four mutation-driven enhancers as independent prognostic factors for BRCA subtypes. In Her2 subtype, enhancer G > C mutation was associated with poorer prognosis through influencing its potential target genes FBXW9, TRIR, and WDR83. We identified aminoglutethimide and quinpirole as candidate drugs targeting the mutated enhancer. In normal subtype, enhancer G > A mutation was associated with poorer prognosis through influencing its target genes ALOX15B, LINC00324, and MPDU1. We identified eight candidate drugs such as erastin, colforsin, and STOCK1N-35874 targeting the mutated enhancer. Our findings suggest that somatic mutations contribute to breast cancer subtype progression by altering enhancer activity, which could be potential candidates for cancer therapy.

19.
Chem Biodivers ; 21(3): e202400017, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38321767

RESUMO

Three undescribed isosteroidal alkaloids, przewalskines A-C (1-3), as well as seven known alkaloids (4-10) were obtained from Fritillaria przewalskii bulbs. Their structures were deduced by extensive HRESIMS, 1D NMR, and 2D NMR analyses, and their bioactivities were evaluated involving the anti-inflammatory and inhibitory potencies on AChE, BChE, and Aß aggregation. Compound 4 revealed the potent effect on inhibiting Aß aggregation activity with IC50 value of 33.1 µM, AChE activity with IC50 value of 6.9 µM, and also showed NO release inhibitory acitivity with IC50 value of 32.6 µM. These findings contribute new multi-.target anti-AD agents and embody the chemical diversity of F. przewalskii.


Assuntos
Alcaloides , Fritillaria , Fritillaria/química , Alcaloides/farmacologia , Alcaloides/química
20.
J Med Chem ; 67(5): 3860-3873, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38407934

RESUMO

Unfractionated heparin (UFH) and low-molecular-weight heparins (LMWHs) are widely applied for surgical procedures and extracorporeal therapies, which, however, suffer bleeding risk. Protamine, the only clinically approved antidote, can completely neutralize UFH, but only partially neutralizes LMWHs, and also has a number of safety drawbacks. Here, we show that caltrop-like multicationic small molecules can completely neutralize both UFH and LMWHs. In vitro and ex vivo assays with plasma and whole blood and in vivo assays with mice and rats support that the lead compound is not only superior to protamine by displaying higher neutralization activity and broader therapeutic windows but also biocompatible. The effective neutralization dose and the maximum tolerated dose of the lead compound are determined to be 0.4 and 25 mg/kg in mice, respectively, suggesting good promise for further preclinical studies.


Assuntos
Heparina de Baixo Peso Molecular , Heparina , Ratos , Camundongos , Animais , Heparina/uso terapêutico , Heparina de Baixo Peso Molecular/farmacologia , Heparina de Baixo Peso Molecular/uso terapêutico , Antídotos/farmacologia , Antídotos/uso terapêutico , Protaminas/farmacologia , Bioensaio , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA