Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(7)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34361151

RESUMO

With the advances in nanofabrication technology, horizontally aligned and well-defined nitrogen-doped ultrananocrystalline diamond nanostripes can be fabricated with widths in the order of tens of nanometers. The study of the size-dependent electron transport properties of these nanostructures is crucial to novel electronic and electrochemical applications. In this paper, 100 nm thick n-type ultrananocrystalline diamond thin films were synthesized by microwave plasma-enhanced chemical vapor deposition method with 5% N2 gas in the plasma during the growth process. Then the nanostripes were fabricated using standard electron beam lithography and reactive ion etching techniques. The electrical transport properties of the free-standing single nanostripes of different widths from 75 to 150 nm and lengths from 1 to 128 µm were investigated. The study showed that the electrical resistivity of the n-type ultrananocrystalline diamond nanostripes increased dramatically with the decrease in the nanostripe width. The nanostripe resistivity was nearly doubted when the width was reduced from 150 nm to 75 nm. The size-dependent variability in conductivity could originate from the imposed diffusive scattering of the nanostripe surfaces which had a further compounding effect to reinforce the grain boundary scattering.

2.
Materials (Basel) ; 14(3)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572648

RESUMO

The aim of this review is to provide a survey of the recent advances and the main remaining challenges related to the ultrananocrystalline diamond (UNCD) nanowires and other nanostructures which exhibit excellent capability as the core components for many diverse novel sensing devices, due to the unique material properties and geometry advantages. The boron or nitrogen doping introduced in the gas phase during deposition promotes p-type or n-type conductivity. With the establishment of the UNCD nanofabrication techniques, more and more nanostructure-based devices are being explored in measuring basic physical and chemical parameters via classic and quantum methods, as exemplified by gas sensors, ultraviolet photodetectors, piezoresistance effect-based devices, biological applications and biosensors, and nitrogen-vacancy color center-based magnetic field quantum sensors. Highlighted finally are some of the remaining challenges and the future outlook in this area.

3.
Sensors (Basel) ; 20(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858789

RESUMO

We report on the different surface structures of tungsten oxides which have been synthesized using a simple post-annealing-free hot-filament CVD technique, including 0D nanoparticles (NPs), 1D nanorods (NRs), and 2D nanosheet assemblies of 3D hierarchical nanoflowers (NFs). The surface morphologies, crystalline structures, and material compositions have been characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and Raman spectroscopy, respectively. The sensor performances based on the synthesized samples of various surface morphologies have been investigated, as well as the influences of operating temperature and applied bias. The sensing property depends closely on the surface morphology, and the 3D hierarchical nanoflowers-based gas sensor offers the best sensitivity and fastest response time to NH3 and CH3 gases when operated at room temperature.

4.
Nanomaterials (Basel) ; 10(8)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717785

RESUMO

This study presents a fast and effective method to synthesize 2D boron nitride/tungsten nitride (BN-WN) nanocomposites for tunable bandgap structures and devices. A few minutes of synthesis yielded a large quantity of high-quality 2D nanocomposites, with which a simple, low-cost deep UV photo-detector (DUV-PD) was fabricated and tested. The new device was demonstrated to have very good performance. High responsivity up to 1.17 A/W, fast response-time of lower than two milliseconds and highly stable repeatability were obtained. Furthermore, the influences of operating temperature and applied bias voltage on the properties of DUV-PD as well as its band structure shift were investigated.

5.
ACS Appl Mater Interfaces ; 11(41): 38068-38074, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31545584

RESUMO

Diamond nanowires have recently drawn substantial attention because of their unique physical and chemical properties for electrochemical sensors, optoelectronics, and nanophotonics applications. However, diamond nanowire-based ultraviolet photodetectors have not been reported because of the challenges involved in synthesizing crystalline diamond nanowires with controllable morphologies and, more fundamentally, the material's high carrier concentration with low mobilities that limits the obtainable photoresponsivity. The synergetic integration of ultrananocrystalline diamond (UNCD) nanowires with nanoplasmonic enhancement by noble metal nanoparticles is a very promising approach to overcome these shortcomings. Here we report the fabrication of boron-doped ultrananocrystalline diamond nanowires functionalized with the platinum nanoparticles to form self-powered ultraviolet photodetectors that exhibit an ultrahigh photoresponsivity of 388 Amp/Watt at 300 nm wavelength, a fast response time around 20 ms, and a good UV/visible rejection ratio of about 5 orders of magnitude under zero-bias condition.

6.
Nanomaterials (Basel) ; 9(7)2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31252619

RESUMO

Various types of 2D/2D prototype devices based on graphene (G) and boron nitride nanosheets (BNNS) were fabricated to study the charge tunneling phenomenon pertinent to vertical transistors for digital and high frequency electronics. Specifically, G/BNNS/metal, G/SiO2, and G/BNNS/SiO2 heterostructures were investigated under direct current (DC-bias) conditions at room temperature. Bilayer graphene and BNNS were grown separately and transferred subsequently onto the substrates to fabricate 2D device architectures. High-resolution transmission electron microscopy confirmed the bilayer graphene structure and few layer BNNS sheets having a hexagonal B3-N3 lattice. The current vs voltage I(V) data for the G/BNNS/Metal devices show Schottky barrier characteristics with very low forward voltage drop, Fowler-Nordheim behavior, and 10-4 Ω/sq. sheet resistance. This result is ascribed to the combination of fast electron transport within graphene grains and out-of-plane tunneling in BNNS that circumvents grain boundary resistance. A theoretical model based on electron tunneling is used to qualitatively describe the behavior of the 2D G/BNNS/metal devices.

7.
Rev Sci Instrum ; 89(1): 015001, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29390674

RESUMO

A newly fabricated characterization station is presented. It is a compact, cost-effective, and easily adjustable apparatus. Each part including 4-pin probe, manipulators, operating temperature, and applied bias can be independently controlled. The station can provide highly reliable, reproducible, and economical methods to quickly conduct and complete the characterizations of a large amount of sensing materials within a short period of time. It is particularly suitable for studies of various nanostructured materials and their related thermal effect, polarization effect, sensitivity, and electrical and electronic properties.

8.
Materials (Basel) ; 10(9)2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28837097

RESUMO

Metacomposites, composite materials exhibiting negative permittivity, represent an opportunity to create materials with depressed plasmon frequency without the need to create complex structural geometries. Although many reports exist on the synthesis and characterizations of metacomposites, very few have ventured into exploring possible applications that could take advantage of the unique electrical properties of these materials. In this article, we report on the chemiresistive properties of a polymer-CNT metacomposite and explore how these are affected by Argon plasma treatment.

9.
Sci Rep ; 6: 23457, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26988399

RESUMO

We report on a new approach to quickly synthesize high-quality single crystalline wide band gap silicon carbide (SiC) films for development of high-performance deep ultraviolet (UV) photodetectors. The fabricated SiC based UV photodetectors exhibited high response while maintaining cost-effectiveness and size miniaturization. Focus of the experiments was on studies of electrical and electronic properties, as well as responsivity, response and recovery times, and repeatability of the deep UV photodetectors. Raman scattering spectroscopy and scanning electron microscope (SEM) were used to characterize the SiC materials. Analyses of the SEM data indicated that highly flat SiC thin films have been obtained. Based on the synthesized SiC, deep UV detectors are designed, fabricated, and tested with various UV wavelength lights at different radiation intensities. Temperature effect and bias effect on the photocurrent strength and signal-to-noise ratio, humidity effect on the response time and recovery time of the fabricated detectors have been carefully characterized and discussed. The detectors appear to have a very stable baseline and repeatability. The obtained responsivity is more than 40% higher compared to commercial detectors. The good performance of the photodetectors at operating temperature up to 300 °C remains nearly unchanged.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA